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The Origin and Grounding of Symbols 

Scholars studying the origins and evolution of language are also interested in t4e 
general issue of the evolution of cognition. Language is not an isolated capability 
of the individual, but has intrinsic relationships with many other bebavioral, 
cognitive, and social abilities. By understanding the mechanisms underlying the 
evolution of linguistic abilities, it is possible to understand the evolution of 
cognitive abilities. Cognitivism one of the current approaches in psychology and 
cognitive science, proposes that symbol systems capture mental phenomena, and 
attributes cognitive validity to them. Therefore, in the same way that language is 
considered the prototype of cognitive abilities, a symbol system has become the 
prototype for studying language and cognitive systems. Symbol systems are 
advantageous as they are easily studied through computer simulation (a computer 
program is a symbol system itself), and this is why language is often studied using 
computational models. 

A symbol system is made up by a set of arbitrary "physical tokens" (i.e., 
symbols) that can be manipulated on the basis of explicit ~ l e s  (<ps syntax). Some 
of the main properties of such a symbol system are: (a) compositeness, that is 
symbols and rules can he recursively composed; and (b) semantic interpretability, 
specifying that the entire system and its parts can be systematically assigned a 
meaning (Pylyshyn, 1984; Hamad, 1990). Some significant issues arise when 
studying such symbol systems as a direct metaphor and model of language. These 
will also have direct implications for the study of the origins and evolution of 
language. The first issue is to establish exactly what a symbol is, by giving a clear 
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and unambiguous definition of it. Subsequently, the process of how symbols take 
their meanings needs to be undetstood, for example by studying the symbol 
grounding problem Finally, questions regarding the evolution of symbols and 
symbol manipulation abilities need to be addressed. 

Definition of a symbol 

The d e f i n i t i ~ ~  of a symbol is a yet open and highly debatable issue. Although it is 
possible to give a precise definition of a symbol in a computational symbol system, 
it is more dificult when we use this term in the context of language and 
communication systems. Historically, a semiotic distinction was made between the 
different constituents of a communication system: icons, indices, and symbols. 
Tbis distinction, originally introduced by Peirce (1978), is based on the type of 
reference existing between objects and components of a communication system. 
Peirce's distinction between icons, indices, and symbols is based on the fact that 
(1) an "icon" is associated with an object because of its physical resemblance to it, 
(2) an "index" is associated with an object because of timelspace contiguity, and 
fmally (3) a "symbol" is associated with an object due to social convention or 
implicit agreement and it has an arbitrary shape, with no resemblance to its 
referent. 

Recently, similar distinctions have beenproposed. For instance, Deacon (1997) 
uses a hierarchy of teferencing systems based on icons, indices, and symbols. He 
distinguishes three types of relationships between the means of communication and 
their referents in the external world and/or in the same communication system. 
fcons have associations with entities in the world because of stimulns 
generalization and conventional similarity. Indices are associated with world 
entities by spatio-temporal correlation or part-whole contiguity. These indexical 
references are commonly used in animal communication systems. Symbols are 
characterized by the fact that they have double referential relationships. One type 
of relationship is based upon the indexical link of a symbol with a referent in the 
world. The second type of association connects logical and combinatorial 
relationships with other symbols. For example, in English the verb "to give" is a 
symbol because it refers to an action, and as a verb it is also associated with nouns 
that can be used as subject, nouns that can be used as patients, etc. Deacon's 
d e f ~ t i o n  of symbols is not restricted to language, although symbols express their 
best potentials in language. There are non-linguistic symbolic tasks, such as the 
ability to combine elements together using logical combination rules, and general 
mathematical tasks. 

Harnad (1990) distinguishes between three types of mental representations: 
iconic, categorical, and symbolic. The first two are internal to the individual and 
non-symbolic. lconic representations are analogical representations of the proximal 
sensory projections of distal objects and events. Categorical representations are 
learned (or innate) feature-detectors that pick out the invariant features of object 
and event categoties from their sensory projections. Elementary symbols are the 
names of those objects and event categories, assigned on the basis of their non- 
symbolic categorical representations. Higher-order symbolic representations, 
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grounded in these elementary symbols, consist of symbol strings (i.e., propositions) 
mainly describing category membership relationships. 

These more recent definitions of symbols share the fact that the teai symbolic 
feature of a communication system relies on the fact that each symbol is part of a 
wider and more complex system. This system is mainly regulated by composition4 
rules, such as syntax. In this chapter we will use this characterization of symbolsf 
and in particular we will focus on grounded symbols. 

The symbol grounding problem 

The symbol systems' property of systematic semantic interpretability implies that 
any part of the system, and the whole system itself, can be assigned a meaning. 
Therefore a fundamental question must be asked: How is a symbol given a 
meaning? Tbis is the problem of symbol grounding. The type of link that exists 
between symbols and objects is of central importance when using symbol systems 
as models of language and cognition. Cognitivists avoid this problem by ignoring it 
or trivializing it. They claim that the autonomous functional module of the symbol 
system will lately be connected to peripheral devices, in order to see the world of 
objects to which the symbols refer (Fodor, 1976). In practice, cnghitivists o&en 
resolve this problem by creating their computational models with Wother level of 
yet-to-be-grounded "semantic symbols" that supposedly stand for objects, events, 
and state of affairs in the world. For example, in a cognitivist model of language it 
is sufficient to define the set of basic symbols/words (e.g., ".inhn", 'dary", 
"loves") and some syntactic rules to connect them. Subsequently, each basic 
symbol will be assigned a meaning (e.g., the meaning of "John" is "the-boy-with- 
blue-eyes"). This approach is subject to the problem of infmite fegression: where 
does the meaning of the meaningless yet-to-be-grounded "semantic symbols" 
("the", "boy", "with", "blue", "eye") come from? It is not enough to have simply a 
parasitic link of symbols with the meanings in our heads. 

This situation is similar to the paradox of the Chinese Room atgwnent (Searle, 
1982; Hamad, 1990). Suppose you don't speak Chinese and you are given the task 
of replying to some questions asked to you in Chinese. If you used a Chinese 
Chinese dictionary alone, you could try to solve this task by looking at the symbols 
defining the Chinese query words and using them to select (i.e., to chain) a new set 
of Chinese symbols for your answer. In reality, this trip through the dictionary 
would amount to a meny-go-round, passing endlessly from one meaningless 
symbol or symhol-string (the definientes) to another (the definienda), never coming 
to a halt on what anything meant (Harnad, 1990). Even if we you wefe able to do 
this, you would still not have understood Chinese the same way you understand the 
meaning of English words. In order to use and fully understand Chinese, it is 
essential that you link (i.e., ground) at least some essential words to your native 
language1. Therefore, we cannot use this task as an experiment for studying 

' There is a hard version of the Symbol Grounding problem in which the user of a Chinese- 
Chinese dictionary does not previously know any other language. This person would have to 
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Chinese linguistic abilities, nor as an experiment of general linguistic abilities. For 
the same reason, we cannot use a non-grounded symbol system as a model of 
linguistic and cognitive abilities. 

In order to address the problem of symbol grounding, and to propose workable 
and plausible solutions, a model needs to include an intrinsic link between at least 
some basic symbols and some objects in the world. A system must use symbols 
that are directly grounded through Cognitive representations, such as categories. 
This way symbol manipulation can be constrained and governed not by the 
arbitrary shapes of the symbol tokens, but by the non-arbitrary shapes of the 
underlying?dgnitive representations. 

The evolutionary origin of symbols 

In language origin research it is important to loot at the issues of the evolutionary 
acquisition of symbol manipulation abilities and their role in the evolution of 
language. Deacon (1997) has proposed an integrated neural and cognitive theory of 
the evolution of svmbolic and lineuistic abilities. Ilis cxolanation of the uricin of 
language is based on the evolution of his hierarchical referencing sys temr~his  
theory relies on the symbol acquisition problem. Under normal circumstances2, 
only humans have an ability to acquire symbols and language. Animal 
commu~~ication systems are only based on indexical references, i.e., simple object- 
signal associations. These associations are mostly innate (e.g., monkeys' calls) and 
can be explained by mere mechanisms of rote learning and conditional learning. 
Instead, the symbolic associations of human languages have double references, one 
between the symbol and the object, and the second between the symbol itself and 
other symbols3. These associations between symbols are reflected by the syntactic 
rules of human languages, When a complex set of logical and syntactical 
relationships exist behveen symbols, We can call these "words" and distinguish 
grammatical classes of words. A language-speaking individual knows that a word 
refers to an object and implicitly knows that the same word has grammatical 
relationships with otbet words. This combinatotial interrelationship between words 
can lead to an exponential growth of references. When a new word is learned, it 
can be combined with other pre-existing words to exponentially increase the 
overall number of meanings that can be expressed. 

Deacon (1997) also gives a neural explanation for this distinctive difference 
between hon-sytnbolic communication in animals and symbolic languages in 
humans. He uses neurodevelopmental and neuropsychological data to show that 

- - 

solve the task of connecting Chinese symbols between themselves, and also the task of 
learning 10 associate meaning to symbols (Harnad, 1990) 

Deacon admits that under specific experimental circumstances, some species of animals, 
mainly apes, can acquire some type of symbol manipulation abilities. For example, in ape 
language experiments the acquisition of symbolic communication systems has been shown 
(Savage-Rumbaugh and Rumbaugh, 1978). 
' Deacon's use of the term "reference" for the association between symbols has been highly 
criticized (tlurford, 1998). In semiotics, reference is mainly used to indicate the association 
between a symbol and the entity it refers to. 
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the enlarged prefrontal cortex in humans allows them extra processing abilities, 
such as symbol acquisition and symbol manipulation abilities. 

In the next sections we will present a theore6cal and computational framework 
for explaining the cognitive mechanisms for symbol grounding and 3mbdf 
acquisition. In the second part of the chapter we will ptesetd % model for the 
evolution of language based on grounded symbols. 

Cognitive Theories and Models for Syniboi 
Grounding and Symbol Acquisition 

This section describes a cognitive theory that explains the mechahisms foi symbol 
grounding. It is based on a general psychological theory that sees dur basic ability 
to build categories of the world as the groundwork for language and cognitidn 
(Hamad, 1987). This theory focuses on hierarchical mental t@ieSehtafions ahd 
their role in grounding language. It starts from the principle that symbolic 
representations must be grounded bottom-up in non-symbolic icohic and 
categorical representations. This system of hierarchical teptesentations has 
significant advantages. It restricts the problem of direct symbol grounding to a 
smaller set of elementary symbols. Any combination of these symbols, thrdugh 
syntactic mles, will inherit the semantic grounding from its low-level elementaty 
symbols. Consider the case of learning a new concept from a pure lineistic 
definition of it. Let's suppose that you do not know what a zehia is, but are f d i &  
with what horse and stripe patterns look like, because you haw a e n  tnany real 
horses and striped pattems. You also know two symbols (names): "horse" for the 
category of horses and "stripe" for the category of striped pattern's. Suppose that 
the following linguistic definition of zebra: 'zebra"="horse"t " s t r ipe"  is 
introduced. You can immediately understand that the symbol "zebra" must 
correspond to a combination of (the categorical representation of) hotses with (the 
categorical representation of) stripes. Moreover, when you see an individlial zebra, 
you will be able to identify it as a member of the linguistically l emed  category 
zebra. This example shows how easy it is to learn new categoties and hew 
grounded names through the combination of the directly grounded hames of basic 
categories. You would be able to fully understand any English sentence simply by 
knowing a relatively low number of English wordsd and by using an English- 
English dictionary to look up unknown words (i.e., grounding the meaning of new 
words in the known basic words used as definitions). 

The cognitive mechanism at the core of this hierarchy of representations and 
bottom-up groundings is categorical perception. Our ability to build categories 
results in categorical representations that are a "warped" transfomtion of iconic 
representations. This feature filtering ability compresses within-category 
differences and expands between-category distances in similarity space so as to 
allow a reliable category boundary to separate members from non-members. 
Categorical perception consists of this compression/expansioh effect (Harnad 

  bout 2000 words is the size of the vocabulary of an average English speaking person 
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1987). It has been shown to occur in both human subjects (Goidstone 1994; 
Andrews, Livingstone and Hamad, 1998; Pevtzow and Harnad 1998) and neural 
networks (Harnad, Hanson and Lubin. 1991; 1995; Tijsseling and Harnad 1997) 
during the course of category learning. 

Connectionism, a recent theoretical and methodological development in 
psychology and cognitive 'sciences, proposes the use of artificial neural networks as 
cognitive models. Neural network models are based on some general structural and 
functional properties of the brain and permit the modeling of behavioral and 
cognitive ta&, such as categorization and language (Rumelhart and McClelland, 
1986). Various neural networks have proved particularly good at tasks that require 
the classification of input patterns into separate categories. More neural network 
models of language have also been developed (Christiansen and Chater, 1999; 
Elmn, f9g0). Therefore, connectionism is the natural candidate for learning the 
invarlant features underlying catcgorical represenlatioas and connecting names to 
the proxlmal projections of the distal objects they stand for (Harnad, 1990). In tlns 
Way cn~ect ionism can be seen as a complementary component in a hybrid non- 
~ymbofidsymbolic model of the mind. Such a hybrid model Would not necessarily 
need an autonomous symbolic module. The symbolic functions could emerge as a 
consequence of the bottom-up grounding of categories' names in their sensory 
representations. In this way symbol manipulation would be governed not only by 
the a r b i t r q  shapes of the symbol tokens, but also by the non-arbitrary shapes of 
the icons and category invariants in which they are grounded. 

In the next two sections we will describe some connectionist models for the 
phenomena of categorical perception and symbol grounding. Subsequently, we will 
focus on models of the acquisition of language in which lexicons are directly 
grounded into sensory and categorical representations. 

Models of categorical perception and symbol grounding 

We have argued that in a plausible cognitive model of symbol origin, symbolic 
activity should be conceived as some higher-level process, which is not stand-alone 
but takes its raw material from non-symbolic representations, i.e., analogue 
sensori-motor (iconic) in the first instance and then categorical representations. 
Tbis shiA from non-symbolic to symbolic processes is one of the most fascinating 
aspects to be explained when considering language origins. In this section, we 
provide il detailed description of the mechanisms for the transformation of 
categorical perception (CP) into grounded low-level labels, and subsequently into 
higher-level symbols. Finally, we will describe how new symbols can be acquired 
from just the combination of already-grounded symbols, a phenomenon called 
grounding transfer. We shall also show bow all such processes can be impiemented 
into a single neural network model. 

Neural networks can readily discriminate between sets of stimuli, extract 
similarities, and categorize. More importantly, networks exhibit the basic CP 
effect, whereby members of the same category "look" more similar (there is a 
compression of within-category distances) and members of different categories 
look more different (expansion of between-categories distances). One of the early 
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models of CP is Harnad, Hanson and Lubii (1991, 1995). They Mh&d thtte-layeef 
feed-fonvard networks to sort lines into categories according to theit iength. Such 
lines were represented by 8 input units using two basic coding Schemes, iconic 
(e.g., a length-4 line could be coded as "1 11 10000") vs. positional (e.g., the same 
line coded as "00010000"). Single bit values could also be mote or 1eSs discrete 
(coarse representations sucb as .I for 0, ot  .9 for 1 wereused, and in some cases 
boundaries were enhanced by using more distant values for opposite adjacent 
units). Given that CP is defmed as a dectease in within-category hter-stiInhldd 
distances and an increase in between-category distances, a baseline for assessing 
sucb decreasing or increasing movements is required. The first step in this 
simulation is simply to allow networks to "discriminate" between different stimuli 
(to tell pairs of stimuli apart) using a pre-categorization task with ahto-associative 
learning (i.e.. networks were trained to produce exactly the sam6 ihput pattern in 
the output units). The hidden unit activation vectors were ekamined and the 
baseline distances were calculated for each pair of input patterns. After this task the 
networks were fmally trained to sort lines into three categories (&oft, iniddle, 
long) using the back-propagation algorithm. 

Such networks not only exhibit successful categorization, wbich - as we said - 
is a relatively easy task for neural networks, but they also exhibit the same natural 
side-effect revealed by human categorization, i.e., CP. In other words, within- 
category compression and between-categories expansion can be obsewed both in 
humans and networks. Another point of interest from CP simulation is that a close 
scrutiny of hidden representations allows us to propose hypotheses about the 
factors upon which CP is based. Harnad, Hanson and Lubin (1995) found that the 
distances between bidden unit pattern representations are already maximized 
during auto-association (by effect of the baseline discrimination): this could be one 
source of the maximal interstimulus separation in CP. Tbis separation, however, is 
not always so clear-cut as to allow linear separability: which is a clear-cut 
categorization, so in some cases there are "bad" or unclear representations, which 
bappen to be close to the plane separating the categories. The back-propagation 
algorithm, which simulates category learning through supervised feedback, has the 
effect of "pushing" such unclear representations away from this plane. The result is 
an improved separation between categories and, at the same time, a smaller 
distance between representations for the same category; in other words, tbe CP 
eff9c.t - - - - - . . 

Cases where linear separability between categories is attained more easily are 
not random, but this effect is mostly observed with iconic st'iuii. Tijsseling ahd 
Hamad (1997), who replicated these results, suggested that CP is sttongly related 
to factors, like the similarity between stimuli. This cah Itad to different 
possibilities for the linear separability of representations tesulting from simple 
discrimination (the auto-association phase in the described siniulations). When 
there is either extreme nonseparability or extreme separability, th* CP effect is hot 

Given a space where points represent stimulus dimension values, lineat Separability is the 
possibility of drawing a line (in two-dimensional space), a blahe (ih three-dimensional 
space). or a hypcrplane (I"  n.dmlenslonal space) to srparate points belong~n~ to dimerent 
catcgorlcs In the s~t~~ulnlian dcrcrihed. three h~dden unllr uere used 10 represent actiratioo 
values in a three-dimensional space. 
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observed. In the former case, due to the fact that the task is too difficult, already at 
the discrimination level, and in the latter case because it is too easy and there is no 
need for category learning because categories exist. 

CP is a very strong and ubiquitous effect. For example, it was observed in the 
human categorization of speech sound and of colors (Berlin & Kay, 1969). Nakisa 
and Plunkett (1998) recently observed it in a simulation of phonological learning. 
They showed that neural netwdrks could categorize spectral sounds into the 
phonemes of English. The inputs were sounds, sampled from a single language (the 
netwotkaative" language) chosen from among 14 nahval languages. Nakisa and 
Plunkett found that networks form similar representations regardless of the 
particular native language, and such representations exhibit a CP partitioning in the 
specttal continuuni. These networks were trained wing genetic algorithms thus 
showing that CP is not an artifact ofparticular forms of categorical learning. 

The functional role of CP in symbol grounding is clearer as an interaction 
betweeh discrimination and identification. To discriminate is to distinguish some 
(hndefhied) pattern in sensors ("there is something"), and it is a relative judgment 
because something and something else are logically implied in any distinction. To 
identify is to assign a stable identity to what has been discriminated; this is 
revealed by a consistent system reaction when the "same" pattern is presented 
again. Identification is an absolute judgment, and - since it necessarily comes from 
a "sameness" judgment - it has a categorical nature. The CP process attains the 
identification result precisely by acting upon discriminability or separation 
behveeh different categories. Subsequently, CP is a basic mechanism for providing 
more compact representations, compared with the raw sensory projections where 
fea~te-filteritig has already done some of the work in the service of categorization. 
Identification does not presuppose naming. To react consistently to some category 
of stimuli does hot require being able to say what such stimuli are, e.g., by using 
labels that act as names for them. However, compact CP iepresentations are more 
suitabb than the sensory ones in the subsequent process of learning labels for 
categories. These labels, or names for categories, can be further combined into 
propositions and become symbols. 

So fari the process we have described is based on a direct sensorimotor 
interaction with the environment. Symbols derived from this can be called 
"grounded symbols". There is, however, a different way of acquiring new 
categories, namely by combining grounded symbols. The previous example of 
learning that a zebra is a horse with stripes should be recalled to illustrate this 
point. Cangelosi and Hamad (in press) called the first method of acquiring 
categories "dnsorimotor toil" and the second method "symbolic theft", to stress 
the benefit of not being forced to leam from a direct sensory experience for every 
new category. 

A recent model by Cangelosi, Greco and Harnad (2000) simulated this overall 
process of CP, subsequent acquisition of grounded names, and learning of new 
high-order symbols from grounded ones (grounding transfer). Three-layer feed- 
forward neural networks were used (see Figure 9.1), having two groups of input 
units: 49 units simulating a retina and 6 units simulating a linguistic input. The 
networks had five hidden units, and two groups of output units replicating the 
organization of input (retina and verbal output). The retinal input depicted 
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geometric Images (cucles, ellipses, squares, rectangles) MU1 different sizes and 
pos~t~ons6 The activation of each of the verbal input units corresponded to the 
presentation of a pamcular category name. The traitling ptocedute had four 
learnlug stages. In the prototype sorting task the nehvorks were ttained tu 
categorize figures: from Input shapes they had to produce the categorical brototype 
as output. The same networks were subsequently given the task of assdciating each 
shape w~th its name This task a called "entry-level naming". An imitatloh i e M g  
cycle was also used for the linguishc input ahd output unit$. Names acqiired this 
way, however smmple, can be considered grounded hecadse! they wek explicitly 
connected w~th sensory retinal inputs 

Figure 9.1 Network architecture in the Cangelosi, Greco and Harnad (2000) model. 
The encodlng of output units exactly reflects the structure of input bnits. 

The most interesting part of the simulation is the fmal stage, where the same 
networks leam the conjunction of such grounded names (for example, "square" or 
"rectangle") with new arbitrary names (e.g., "symmetric" or "asymmetric"). This 
higher-level learning was accomplished by simple imitation learning of the 
combination of names. It is like teaching "square [is] symmetric" or "rectangle [is] 
asymmetric". The retinal part of the network was not used during this task. After 
this procedure, networks were used for the grounding test. The shapes were 
presented as retinal inputs and output names were checked. In 80% of cases, the 
networks were able to produce the basic name of each shape and its high-order 
name (symmetriclasymmetric). As this leaming comes from the association of 
grounded names with new names, the grounding is "transfened" to names that did 
not have such a property. This is why the process is called "grounding b.ansfer". 

Pixels were pre-processed in order to compress lnformat~on using the receptive fields 
techn~que (Jacobs and Kossylyn, 1994) 
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This model has been extended to use the combinat~on of the grounded names of 
basic features h order to learn higher-order concepts. The same archtecture and 
training procedure were kept. In this case, networks first learned to sort prototypes 
of shapes depicting Mles ,  spots, horses and stripes, and then associate such shapes 
with their names, thereby grounding them They were then taught to assoclate the 
conjunction of grounded names ("horse"+"stnpes" or "turtle"t"spots") w t h  a new 
name ("zebra" or "sportoise"). Networks were able to name the pictures of zebras 
they had never seen before w t h  the name "zebra". This was achieved solely on the 
basis of a linguistic combmation of grounded names, which m fact can be 
consideremhe effect of a true prepos~tional definition. 

Models of the acquisition of grounded symbols 

The path we have followed, starting from stimulus discrimination and leading to 
categories and grounded names for them actually describes the first stages of 
language acquisition. Language is not a common sensorial input. It is not like 
commonly perceived objects, but has something special, because it acts like a 
"comment" on the world. We shall now focus on some models of the acquisition of 
grounded lexicons. The most natural source of inspiration for this kind of 
simulation is language acquisition in children. 

A plausible task to be modeled is the presentation of words along with their 
referents, something like what happens when a parent shows her child a ball while 
uttering "ball". One example of such a kind of simulation is the work of Plunkett, 
Sinha, Moller and Strandsby (1992). They designed a network that had to associate 
simple pictures with labels. The nehvork architecture was similar to the one used 
by Cangelosi, Greco and Hamad (2000) and described earlier (Figure 9.1). There 
were hvo distinct sensory-modalities (retinal and verbal) in the input and output 
layers, and two hidden layers. An auto-associative learning task was used. During 
testing, only either the verbal or retinal input was given and the net was requested 
to give the corresponding other output. As often happens with neural networks, 
they were not able to correctly perform these tasks at all training stages; 
performance was obviously poor at early stages and better with intensive training. 
The interesting result was that performance was not linearly related to the extent of 
training. It suddenly improved at some point, exhibiting something like a 
"vocabulary spurt" without any apparent reason. This happened both for 
comprehension and for production, but at different times. This exactly reflects 
what is observed in children, or in adults when learning a new language: 
comprehension precedes production. In other words, at some stage the net was able 
to "understand" what image a name referred to, but not yet to produce this name 
wbea given the corresponding image. But at a later stage a new, sudden 
improvement would be also observed in production. 

A similat network architecture and learning scheme using auto-association 
were used in a model by Schafer and Mareschal (2001). Networks learned to 
associate names (coded as phonemes) with objects (arbitrary binary vectors). In 
this study, the network's capability to distinguishing different names when 
associated with the same objects was tested. This task models an observation 
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coming from studies with infants, repotting that younger (8-mntltb-old) infBfits ate 
able to produce finer phonetic discriminations than older (14-month-old) infaits. 
Schafer and Mareschal use this model to claim that thete is a possibility of 
obtaining similar developmental discontinuities without necessatily hytiothr($izing 
a difference in processing strategies. The disruption in lo@-level protisshg 
(discrimination) does not necessarily arise from a highet cognitive Inad in highet- 
level (semantic) processing. Note that this model considers the tole n t  
discrimination in language acquisition. In this case, a hindrance to w e  (phbnetic) 
discrimination is subsequent to a well-established association Wth Som+ object 
pattern. The perspective can also be reversed, with names seed an emerging from a 
need for discrimination, as long as they are able to caphue dlffeteuce$ in perceived 
objects. This fundamental property reveals the critical t ok  df illnmage es a 
symbolic tool. 

A model by Greco and Cangelosi (1999) investigates the told of lingnistic 
labels in categorization. It focuses on the feature-extractibtr ptdcess which is 
affected when names already exist for petceived pattern$. Mined fdut- 
layered networks to associate names with pictures. Names refitted to d t f f ~ t i t  
features of the input (name, color, fnnction) and thete were i h t ~ b  hiptit cofiditidi& 
(visual features, name, featnres+name). Analyses of hidden Uctivirtidil show tht 
representations were different in the featuretname conditidh &id these sttoitgig 
depended on the name. For example, the visual input of U b i ~ d  pen ptesented 
together with the label "blue" activated the blue units in the netwotk, while the 
name "pen" activated the pen units. This shows the mediating told of language in 
categorization. The same model was successfidly extended to display this 
knowledge explicitly by using a Further module that re-desctibdd the hidden-layer 
representations using a competitive learning algorithm. 

All these toy models show that simulations can fit ohsewid bdhct~ibrhl t6siiit.s 
or generate reliable predictions about them but they are obviously #iMiifications 
of the real lexicon acquisition task in children. Inasmuch as these models 
investigate how representations are constructed of name-objects associations, they 
are also symbol grounding models. However, words acquired by chlldre~ ate hot 
always associated with their referents, but mostly associated M& other wbth.  
Such models should also be extended to the expressive fnnctiotis of languagb, BS 

we know them from developmental psychology studies. 

Evolving Grounded Languages 

We have established the importance of direct grounding itl models of 
categorization and in language acquisition. Models of the evolutiofi df bymbolll and 
language should also include the grounding of symbols ihta the *orfd. l%& 
computational study of the evolution of language has the additidtlal objectiVk bf 
understanding how and when symbol acquisition abilities otigihated and hdw the 
ability to ground symbols in real world meaning emerged. By llgirig fnodel~ Mth 
emerging symbol grounding properties the researcher is telea~dd from the task of 
deciding which meanings to input to the system in the differeht evolutionary 
stages. For example, a non-grounded approach would have significant limitations 
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in investigating the possible existence (or not) of sequential stages of syntactic 
complexity in the evolution of language. The researcher would have to define an a 
prioti series of stages of semantic complexity upon which syntax would be biased 
to gradually develop. Instead, in a symbol grounding approach, other autonomous 
factors, such as the emergence of different stages of behavioral complexity during 
an organism's adaptation, would be free to affect (or not) the evolution of different 
'stages ofsyntu-complexity, ~" 

Current computational models of the evolution of language deal with the 
symbol gtoundiig problem in different ways. Some models simply avoid the 
problem. byiguoring if or by assuming that this is dot a real problem because it is 
easily solved in latet stages. They think, as cog~tivists do, that the researcher will 
connect the symbols in the simulated communication system with the meaning in 
the teal ~ o t l d .  This is the case of models that use a self-referential system where 
some symbols are used for communication and other symbols aie used m represent 
semantics (e.g., when a list of words is used to denote the list of semantic 
categories). For example, in models that study the auto-organization of signal- 
meaning tables (e.g., Steels, 1996; Oliphant and Batali 1997), the researchers 
provide the system with a fixed list of N symbols denoting "'meanings" and M 
symbols denoting communicatio+signals. fn other models (e.g., Kirby 2000), the 
symbols used for communication vary whilst an invariant semantic layer is 
provided by means of a list of names of semantic categories (e.g., 'Tohn", "Mary", 
"love"). This represents an intermediate layer between the real referents (Mr. J o b  ' 
MS Mary, the feelingof love) and the commu~cating symbols associated to them 
("blap", "blop", "hlup"). However, the missing link between the real feeling of 
love and the semantic. catcgog "love" is what makes sylnhol grounding interesting. 
We cannot Ignore the ln~pl~cation ~Ftl t is  (cognitive) pruccss in the ~n\.estigation of  

;,I the evolution of language. 
A different group of computational models of language evolution deals directly 

with the symbol groundi'ng problem using simulated languages with grounded 
semantics. An example is the embodied approach to the evolution of 
communication between robots (Steels and Vogt, 1997; this volume). Robots 
interact in a real environment with physical entities (walls, obstacles, other robots) 
through sensorimotor devices (video cameras, radio receivers, wheels, arms). This 
experience constitutes the basis for extracting meanings to conlmunicate. Recently, 
robotic models have been extended to the Internet and to communication with 
humans. In Steels and Kaplan's (1999) 'Talking Heads" experiment, two robotic 
agents have the task of describing the location of colored geomehical shapes in a 
whiteboard. Th~ough various Internet sites, human subjects can be remotely 
"embodied" in one of the robotic talking heads and can participate in language 
games. A similar methodology has been applied to the evolution of direct 
communication between robots and humans. The SONY entertainment robot AIBO 
is being trained to evolve a lexicon for communicating with humans (Kaplan, 
2000). 

Additionally, direct grounding of symbols can be obtained though simulation, 
such as artificial life simulations (Parisi, 1997). This type of model achieves 
symbol grounding by explicitly simulating the environment in which the 
communicating agents live and interact. Simulated agents can perform foraging 
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tasks by learning to classify different sources of energy (e.g., ~ h t o o i i ~  b e g )  ad 
to communicate their attributes. The agents' behavior is controited by heural 
networks, which we have shown to be ideal candidates For dealing ivith 
categorization and symbol grounding. This categorization of feod provides Uic 
basic meaning upon which agents will ground their c o ~ c a t i o n  symbols. A 
detailed exampk of this approach i s  presented in the folhvir~g sdction, A ~ s p l ~ ~ i f i c  
theory of the origin of language based on hearsay and symbolic theft ail1 be tesbd 
using the symbol grounded metaphor of a "mushroom worib' (Cangeidsi and 
Harnad, in press). 

The symbolic theft hypothesis of the origins of words ahd 
language 

We have already discussed categorical perception and the ability to build 
categories of objects, events and states of affair in the world. These constitute the 
groundwork of cognition and language. There are two opposite ways of acquiring 
categories. First, we can use "sensorimotor toil", in which nerh. categories are 
acquired through real-time, feedback-corrected. hial and ettor experience. 
Secondly, we can use "symbolii thew, in which new categories ate acquired 
through language, based on hearsay from propositions (e.g., tbroagh booleau 
combinations of symbols describing them). In competition, sy~nbolic theft always 
outperforms sensorimotor toil. It is more efficient than toil because only one 
prepositional description of a new category is enough tb learn it. fn contrast, 
repeated experience is required to learn a category by sensorimotor toil. Due to this 
significant advantage, it has been hypothesized that symbolic theft is the basis of 
the adaptive advantage of language (Harnad, 1996). However, some basic 
categories must still be learned by toil to avoid an infinite regress in the symbol 
grounding problem. The picture of language origins and evolution that emerges 
from this hypothesis is that of a powerful hybrid symbolic/sensorithotor capacity. 
Initially, organism evolved an ability to build some categories of the world 
through direct sensorimotor toil. They also learned to name sdch categories. 
Subsequently, some organisms must have experimented with h e  prepositional 
combination of the names of these categories and discovered the advantage of this 
new way of learning categories, stealing their knowledge by heatsay. The benefits 
of the symbolic theft strategy must have given these organisms the adaptive 
advantage in natural language abilities. This is infinitely superior to its purely 
sensorimotor precursors, hut still grounded in and dependent on hem. 

To test this hypothesis of language origin Cangelosi and Hamad (in press) 
developed a computational model which simulates a community of foraging 
organisms. They rely on learning categories of foods to survive. Category 
formation is achieved through toil or theft strategies. The model tests the prediction 
that acquiring categories through symbolic theft is more adaptive than acquiring 
them through sensorimotor toil. Moreover, the model should help Us to understand 
the mechanisms central to symbol grounding. For example, it should show that 
new categories learnt by theft inherit their grounding from the lo*-level categories. 
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Computer simulation 

The computational model uses the mushroom world scenario (Harnad 1987) to 
simulate the behavior of virtual organisms that forage among the mushrooms, 
learning what to do with them For example, mushrooms with feature A (i.e., those 
with black spots on their tops) are to be eaten; mushrooms with feature B (i.e., a 
dark stalk) are to have their location marked, and mushrooms with both features A 
and B are to be eaten, marked and returned to. All mushrooms have three irrelevant 
features (C, b a n d  E) that the foragers must leam to ignore. When organisms 
approach a musHroom, they emit a call associated with their functionality (EAT, 
MARK). Both the correct action pattern (eat, mark) and the correct call (EAT, 
MARK) are learned during the foragers' lifetime through supervised learning 
(sensorimotor toil). Under some conditions, the foragers also receive the call of 
another forager as input. This will be used to simulate theft learning of the retum 
behavioi. 

Tbe behavior of organisms is controlled by neural networks that process the 
sensory information about the closest mushroom and activates the output units 
corresponding to the movement, action and call patterns. For each action, the 
forager first produces a movement and an actionlcall output using the information 
about the physical features of the mushroom. The network's action and call outputs 
are compared with their expected output and this difference is then backpropagated 
to adjust connection weights. In this way the forager learns to categorize the 
mushrooms by performing the correct action and call. In the second spread of 
activation the forager also learns to imitate the call. It only receives the correct call 
for that kind of mushroom as input, which it must imitate on its call output units. 
This learning is likewise supervised by back-propagation. 

The populatioti of foragers is also subject to selection and reproduction through 
a genetic algorithm (Goldberg,-1989). The initial population consists of 100 neural 
nehvorki with a random weight matrix. During the forager's lifetime, the fitness is 
computed by assigning points for each time a forager reaches a mushroom and 
performs the correct action on it (eatimarWreturn). At the end of their life-cycles, 
the 20 foragers with the highest fitness in each generation are selected and allowed 
to teproduce by engendering five offipring each. The population of newboms is 
subject to random mutation of their initial connection weights. 

Adaptive advahtages of Theft versus Toil learning 
OW hypothesis is that the theft strategy is more adaptive (i.e., results in greater 
fitness and more mushroom collection) than the toil strategy. To test this, we 
compare foragets' behavior for the two learning conditions. In the first simulation, 
two experimental groups were directly compared: Toil and Theft. In the first 200 
genetation3, a11 otganisms learn through sensorimotor Toil to eat mushrooms with 
feature A and to inark mushrooms with feature B. They also learn the names of the 
basic caiegoties: EAT and MARK. The return behavior, and its name are not yet 
taught. Froh genetation 200 to 210, organisms live for a longer life stage. In the 
second part of their lifetime, they are divided into the two groups of Toilers and 
Thieves. Toil foragers go on to learn to return to AB mushrooms in the same way 
they had learned to eat and mark them through honest toil. In contrast, Thee 
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foragers leam to return on the basis of hearing the vocalization of the muslitoom' 
names. They rely completely on other foragers' calls to learn to rehihi as thky dii 
not receive the feature input. To test the adaptive advantage of Theft versus ~ o i i  
learning, we compare foragers' behavior for the two conditions by counting the 

- number of AB mushrooms that are correctly returned to. Thidvei: snccessfillfy 
return to more AB mushrooms (55) than Toilers (44). This means &tit l e W g  td 
return from the grounded names EAT and MARK is more adaptive thah l e d g  it 
through direct toil based on sampling the physical features of the n i ~ s h r o t l ~ .  

A more direct way to study the adaptive advantage of TheR ovSf Toll id t6 366 
how they fare in competition against one another. W€ perfoWdspffld ddwetitite 
simulations. Again, foragers live for two life stages. In tha fed ,  all id& td'e'at ;iAd 
mark through Toil. In the second life stage, the fotagers ztie ratldofiily di~idgd ititb 
50 Thieves and 50 Toilers who must all leam to rehltn. Direct co$patItiofl dhly 
occurs at the end of the life cycle, in the selection of the fittest2d fotagbtb to 
reproduce. In the present ecology, the assumption is that mu'stitodtil8 8 6  abutidsilt 
and that fitness efiiciency only affects the selection of the log 20 fdt8@ts. Figliie 
9.2 shows the proportion of Thieves in the overall pdpulatioll of ~ e f !  vs. Toil. 
Thieves gradually come to outnumber Toilers, so that iti less thsn 16 geflet~titins 
the whole population is made up of Thieves. 

looL ' 

/' 

0 1 2 3 4 5 6 7 8 9  
Generations (thlo) 

Figure 9.2 Proport~on afTmeves in the ten competitive simulatlons 

The direct competition between Toilers and Thieves has been studied id mote 
detail in other simulations. In one study we vatied the availability df rtiUShidoms to 
see the effects of scarcitylabundance of mushrooms for coibpetitidti. Iti another 
simulation, kinship relationships determined the choice of the listenet dtganism to 
which the names of mushrooms was vocalized. Results show that when the scatcity 
of the mushrooms is varied, Theft beats Toil provided there afe pleflty of 
mushrooms for everyone. However, when the mushroom are scarce and 
vocalizing risks losing the mushroom to the Thief, Toil beats Theft and the 



foragers are mute. Further studies analyzing kinship showed that under conditions 
of scarcity vocalizing only to relatives heats vocalizing to everyone. 

All these results support the original hypothesis that a Theft learning strategy, 
based on language, is much more adaptive that a Toil strategy. This adaptive 
advantage could be basis for the origin of language and its adaptive advantage. 

categorical perception effects 
These computational models are also useful in the investigation of the changes that 
comunica&y and linguistic abilities cause in the organism. We have already 
stressed the importance of internal categorical representation in the grounding of 
symbols. Previously we showed the compression of within-category distances and 
the expansion of between-category distances in categorization and naming tasks. 
Now we will show how these phenmnena are also present in the model of the 
evolution of Theft learning and conunnnication. We will study the changes in the 
foragers' hidden-unit representations for the mushrooms to determine internal 
changes during Toil and Theft. We compare categorical representations in four 
different experimental conditions: (1) Pre-learning, for random-weight networks 
before learning; (2) No-return, for foragers' networks that were only taught to eat 
and to call EAT, and to mark and to call MARK, (3) Toil-retum, for networks that 
also learned to return and to call RETURN with feature input, and (4) Theft-return 
for learning to return from calls alone. 

We recorded the Euclidean distances between and within categories using the 
coordinates of the five hidden unit activations. At the end of each simulation, the 
five fittest foragers in each condition were tested based on the measurement of 
within- and between-category distances. For each type of distance, there are four 
means for the distances between the internal representations of the Do-nothing 
(neither Mark nor Eat nor Return), Eat only, Mark only, Eat+Mark+Retum. The 
average within-category distances in three experimental conditions are shown in 
Table 9.1. Statistical tests on these data suggest that within-category distances 
decrease significantly from Pre-learning to No-return to Toil. As expected, the 
greatest decrease is between the (random) Pre-learning and all the post-learning 
nets. M e n  we compared the four types of categories, all means differed from each 
other except the Eat and Mark within-distances. That is, the within-category 
distance for Eat and Mark are the same, whereas the within distance of Do-nothing 
is the greatest and that of Return the smallest. These results are consistent with 
categorical perception effects. There is a compression of the category from the p r e  
learning condition to all other post-categorization cases. 

Table 9.1 Table of means for the within-category distances. Values for the Theft 
condition are not reported because the distance is always 0 (all ten samples of 
mushrooms use the same call input) 

CATEGORY Pre-learning No-retum Toil-return 
Do-nothine 0.34 0.16 0.14 
Eat 0.32 0.14 0.12 
Mark 0.30 0.13 0.12 
Eat+Mark(+Retum) 0.29 0.11 0.09 
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The between-category distances amongst the four categories in the different 
experimental conditions are described more clearly in Figure 9.3. The quadtilateral 
represents the 2D projections of the between-category distances in the fottr 
conditions (= four sides of the quadrilateral shape). All distancbs, except Eat vs. 
Mark, are directly comparable and reflect the actual Euclidean d i s ~ c e s  between 
categories. The figure shows an expansion of the beiween-categoty distances from 
Pre-learning to Theff Learning. The thin dashed rectangle refets to the behueetl- 
category distances before learning (random weights). The thick dashed liae 
represents what they look like after Toil learning of Eat and withbllt hehim. 
The thin continuous line refers to the Toil learning of Eat and Matkj drith Rehun, 
and the thick continuous line is for Theft learning of Rehim. Pust, this ch&t shows 
the expected categorical perception effect of differentiation between (the centers 
of) categories from the Pre-learning condition to the other post-learning cased. 
What is new and more important is the effect of Theft learning relative to the othet 
learning conditionsfcategories. The distances between Re- ad $11 the other 
categories (Return vs. Eat, Rehun vs. Mark, Return vs. Do-nothing) LLte the highest 
in the Theft condition. This suggests that Theft learning not only is mote 
advantageous for survival (Thieves collect more return mushroom that Toilers), 
but it also "optimizes" the internal categorical representation by the categoiical 
effects of within-category compression and between-category expaiision. That is, 
language learning is based on categorization, but in retum it improves categorical 
learning. 

/+Return) 

Eat Mark 

- Then - Toil 
No-return 

. . .~~~.  Pre-learning 
-- do nothing 

Figure 9.3 Two-dimensional projections of the behueen-category distances 
(quadrilateral sides) in the four learning conditions. 

Summary 

In th~s  chapter we have focused on the simulation of the acquis~tion ~ I I I ~  evolution 
of grounded languages. We have given a defuut~on of symbol based tnainly on 
cognltlve (Harnad, 1987) and neurally-related semiotic factors (beacoh, 1997). 
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The teal symbolic feature of communication relies on the fact that each symbol is 
part of a arider and more complex system This is mainly regulated by 
coitpositiona! tules, such as syntax. Subseqtlently, the problem of symbol 
grounding in cogtlitive models was illustrated. Psychologically plausible models of 
l a n g q e  and cdgnition should include an intrinsic link between at least some basic 
symbols and home objects in the world. These basic symbols must be directly 
grounded in cognitive tepresentations, such as categories. This way symbol 
manipulation can be constrained by the hon-arbitraty shapes of the underlying 

! cognitive tepresentatiohs. 
Various dotnputational models of categorization, ~ymbol grounding transfer, 

end languige acquisition have been described. They are primarily based on the use 
of n e m l  neworks. These models can easily abstract from similarities between 
s t i m ~ l i  ahd tchieve categories. Moreover, they can associate tlaines with 
categories. They exhibit the basic categorical perception effect, whereby internal 
repte'sentations of members of the same category look more similar and members 
of diffetent categories look more different. In the evolutionary model of the 
symbolic theR acquisition of categories and language, it has been shown that such 
cognitive factots for category learning and symbol grounding can be integrated to 
test hypotheses on the evolution of language. 

We suggest that the inclusion of direct grounding in simulation models of the 
evolution of syntax can improve their potential to explain the emergence of 
linguistic and cognitive abilities. The simulation approach proposed here, and other 
methodologies such as the robotic modeling of the evolution of communication 
(see next chapter), are clear examples of how symbols can directly and 
autonomously ground their meaning. 
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