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Abstract. Neural network models of categorical perception (compression of within- 
category similarity and dilation of between-category differences) are applied to the 
symbol-grounding problem (of how to connect symbols with meanings) by connecting 
analogue sensorimotor projections to arbitrary symbolic representations via learned 
category-invariance detcctors in a hybrid symbolic/non-symbolic system. Our nets 
are trained to categorize and name 50 X 50 pixel images (e.g. circles, ellipses, squares 
and rectangles) projected on to the receptive field of a 7 X 7 retina. They first learn to 
do prototype matching and then entry-!eve1 naming for the four kinds of stimuli, 
grounding their names directly in the input patterns via hidden-unit representations 
('sensorimotor toil'). We show that a higher-level categorization (e.g. 'symmetric' 
versus 'asymmetric') can be learned in two very different ways: either (1) directly 
from the input, just as with the entry-level categories (i.e. by toil); or (2) indirectly, 
from Boolean combinations of the grounded category names in the form of 
propositions describing the higher-order category ('symbolic theft'). We analyse the 
architectures and input conditions that allow grounding (in the form of compression/ 
separation in internal similarity space) to be 'transferred' in this second way from 
directly grounded entry-level category names to higher-order category names. Such 
hybrid models have implications for the evolution and learning of language. 

Keywords: symbol grounding, categorical perception, neural networks, pattern 
recognition. 

1. Introduction 
The non-linguistic or prelinguistic part of us is purely robotic, which is to say purely 
sensorimotor (Harnad 1995). Or, to put it in a more ecumenical way, so as to make it 
clcar that 'robotic' is anything but pejorative in this context: the pinnacle of our 
hierarchy of robotic capacities is a very special kind of sensorimotor skill, that of: (1) 
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collectively making unique, arbitrary responses that name objects, events and states 
of affairs; and (2) combining those responses to describe further objects, events and 
states (not necessarily present ones and not necessarily describing them truly). This 
ability of a robot community to share names, descriptions and the thinking and 
knowledge that underlie them is what it means to have and use language (Harnad 
1996). 

The classically sensorimotor component of this ability-the non-linguistic inter- 
action with those objects, events and states-is the traditional domain of robotics: 
vision, locomotion, object recognition and manipulation. But even in modelling that 
domain, robotics has found it helpful, and perhaps necessary, to make usc of internal 
structures and processes that are, if not linguistic, then at least symbolic. 

1 .l. The symbol-grounding problem 
A computcr program is a set of rules (algorithms) for manipulating meaningless 
symbols in a way that can be systematically interpreted as meaning something (e.g. 
payroll calculations, solutions to quadratic equations, chess movcs, moon-landing 
simulations, or natural language texl). But although the symbols are meaningfully 
interpretable by their users, they are meaningless in and of themselves, just as the 
symbols on thc pages of this paper are. For this rcason, symbol systems alone are 
not viable models of the mind-they cannot be the language of thought. This is the 
symbol-grounding problem (IIarnad 1990). To embody thought, a cognitive system 
must be autonomous: the connections betwecn its symbols and what they stand for 
must be direct and intrinsic to the systcm, rather than having to be mediated by an 
external userlinterpreter. Some researchers have suggested that hybrid connectionist 
and symbol models can deal with the symbol-grounding problem (Harnad 1993). 
Others have suggested that connectionist systems can handle compositionality and 
systematicity on their own, without requiring any hybridization with symbol systems 
(van Gelder 1990, Hadlcy 1994, Hadley and Cardei 1999). 

A symbol is a physical object that represents other objects. In the most important 
and powcrful symbol systems, those of natural language, symbols can express thoughts 
by being combined and recombined to form propositions. All artificial symbol systems 
(such as thosc of mathematics and physics) are mercly subsets of natural language. The 
'shape' of a symbol in a symbol systemis arbitrary. It neither resembles nor is causally 
connected in any way to the object it represents, exccpt by its users. It is merely part 
of a formal notational convention that its users, cxplicitly or implicitly, agree to adopt, 
whether it is a word in a language, a numcral of arithmetic, or a binary digit (011) in a 
low-level computational code. 

How do symbols come to mean something? One candidate answer is 'by definition', 
but a definition just consists of further symbols: Wherc do those symbols get their 
meaning? Consider somcone who does not speak any Chinese trying to find the 
meaning of a Chinesc symbol in a Chinesc-Chinese dictionary: all this person can do 
is search endlcssly from symbol to meaningless symbol. How can the meanings of the 
symbols in a symbol system be grounded in something other than just further 
ungrounded syn~bols? 

According to 'computationalists', cognition is computation (Pylyshyn 1984), 
implemented in a purely symbolic 'language of thought' (Fodor 1975). The meanings 
of the symbols arise somehow from the system's being connected in 'the right way' to 
the things in the world that its symbols stand for. But what is this 'right way'? And will 
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the properly 'connected' system still be a pure symbol system linked to the world, or 
will the connecting system now be part of a hybrid symbolic/non-symbolic 'language 
of thought'? In other words, is thought really just symbolic, or is it sensorimotor too, 
which is to say, robotic? 

1.2. Neural networks and categorical perception 
To 'discriminate' is to discern whether two patterns projected on to our sensory 
surfaces are the same or different. This does not require sophisticated symbolic 
operations, only a comparison between iconic representations, the internal analogue 
of the sensory patterns, perhaps by superimposing one on to the other. But, of course, 
to discriminate inputs is not yet to be able to say what those inputs are. To identify an 
object, one must somehow detect the invariant features in its iconic representations, 
the features that make them icons of that particular object (or kind of object) rather 
than another; the rest of the features must be ignored. The more abstract represen- 
tations that this feature-filtering of the icons generates are categorical representations 
(Harnad 1987). 

Categorical representations are still only sensory rather than symbolic, because 
they continue to preserve some of the 'shape' of the sensory projections, but this shape 
has been 'warped' in thc service of categorization: thc feature-Mtering has comprcssed 
within-category differences and expanded between-category distanccs in similarity 
space so as to allow a reliable category boundary to separate members from non- 
members. This compressionlexpansion effcct is called 'categorical perception' 
(Harnad 1987) and has been shown to occur in both human subjects (Goldstone 1994, 
Andrews et al. 1998, Pevtzow and Harnad 1997) and neural nets (Harnad et al. 1995, 
Tijsseling and Harnad 1997, Csato et al. submitted) during the course of category 
learning. 

Categorical representations can be connected to labels, the names of the categories, 
but such labels still do not mean anything until they are combined to form propo- 
sitions. Only at that stage do they become symbols, and the propositions of which 
they are components become symbolic representations (Harnad 1987). 

One of the most natural capabilities of neural nets is category learning. Nets can be 
trained to detect the invariants in sensory input patterns that allow them to be sortcd 
in a specified way. Once the patterns have been sorted, the category can be given a 
name. That name is then grounded in the system's autonomous capacity to pick out, 
from the 'shadow' it casts on its sensors, the thing (or kind 01 thing) in the world that 
the name refers to-without the mediation and interpretation of an external user. 

The training of both neural nets and people to categorize through trial and 
error with corrective feedback has come to be called 'supervised learning', but 
we will refer to it here as the acquisition of categories through 'sensorimotor toil', to 
contrast it with a radically different way of acquiring categories, which we will refer 
to as 'symbolic theft'. Acquiring a category through 'toil' is based on learning through 
direct sensorimotor interaction with its membcrs under the guidance of corrective 
feedback. The outcome is a new category and usually also a new name for it the name 
can then serve as a grounded elementary symbol. Acquiring a category through 'theft', 
in contrast, is based on symbols only, rather than on sensorimotor interaction with 
the things the symbols stand for: the category is merely described by a proposition 
composed of grounded symbols. (Why we refer to this as 'theft' will be explained in 
section 4 in the context of a hypothesis about the evolutionary role of language; for 
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now, just think of a 'stolen' category as one that is acquired without having to do any 
trial and error training with instances and feedback in order to get it; see Cangelosi 
and Harnad in press.) 

Categories grounded directly through sensorimotor toil have iconic and categorical 
representations, whereas categories grounded indirectly through symbolic theft have 
symbolic representations consisting of their prepositional descriptions in the form of 
symbol strings. The descriptions are Boolean or even more complex, quantified 
combinations of category names that are already grounded, either directly by toil, or 
indirectly by theft. In the simulations described later, we test what happens when nets 
that first acquire a set of categories through dircct sensorimotor toil are then taught 
a higher-level category through symbolic theft (i.e. by being given a string of symbols 
that tells them what the higher-order category is). We shall show that sensorimotor 
grounding not only transfers to higher-ordcr, symbol-based categories in a bottom- 
up fashion, but that the new, symbol-based categories also have some of the 
characteristic top-down effects of sensorimotor category learning, namely, that they 
deform or 'warp' internal similarity space in the service of categorization (for the 
warp cffect on directly grounded categories see Tijsseling and Harnad 1997). This 
sensorimotor 'imprint' on symbolic thought may be what grounds it. 

2. Method 
2.1. The stimulus set 
Our neural nets wcre trained to categorize and name 50 X 50 pixel images of circles, 
ellipses, squares and rectangles projected on to thc receptive field of a 7 X 7 unit 
'retina'. Once the net had grounded these four entry-level (E-Level) category names 
('circle', 'ellipse', etc.) through direct trial and crror experience supcrvised by 
corrective feedback ('toil'), it was taught the higher-level (H-Level) category 
'symmetric/asymmetric' on the basis of strings of symbols alone ('theft'). 

A total of 292 stimuli was used (256 training, 32 test and four teaching input stimuli). 
The 256 stimuli consisted of four groups of circles, ellipses, squares and rectangles 
(figure 1 ). In each group there were 64 (8 X 8) stimuli that varied in size (eight sizes 
generated by reducing the diameter by 2 pixels) and retinal position (eight positions 
generated by shifting the centrc of the figure by 1 pixel in the eight adjacent cells). The 
32 test stimuli were also subdivided into four groups of eight stimuli each, one for 
each size. The position for each size was hence fixed, but it varied across sizes. The 
four teaching inputs wcre the largest instances of each shape (prototype). 

2.2. Neural networks 
Ten three-layered feed-forward nets differing in their random initial weights 
were exposed to the 256 training stimuli during the three learning stages. The input 
layers consisted of two groups of units: the retina, with 49 units (7 X 7) and thc six 
linguistic/symbolic units (one each for the six category names: 'circle', 'ellipse', 
'square', 'rectangle', 'symmetric' and 'asymmetric'). The hidden layer had five units 
rcceiving connections from both groups of input units. The output had the same 
organization as thc 49 retinal units plus six linguistic/symbolic units (figure 2). 

The coding of our linguistic/symbolic input and output units is localist. These arc 
treated as having already been 'pre-categorized' in our simulations, and as taking the 
form of singlc unit activity. The units should be interpreted as being based on the 
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Figurc 1. Stimulus set and localisl coding of naming units. 

Figure 2. Neural network architecture and stimulus coding. 
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categorical invariants of the sensory projections of linguistic stimuli (e.g. phonemes, 
graphemes, etc.). The word 'circle' is to be interpreted as a speech-sound-string 
category (pronounced in various ways in different contexts), or as written letter-string 
category (and its contextual variants). Its sensory origins are no longer relevant when 
'circle' is in turn used as an arbitrary symbol to stand, not for a class of speech or letter 
stimuli (things that sound like 'SURKUL' or look like 'CIRCLE'), but for an object 
(shaped like '0').  In the present simulations, we accordingly use pre-categorized, 
localist coding to allow our nets to create links between arbitrary internal symbols and 
sensory inputs from the retina. The sensory origin of the internal symbols are simply 
assumed. 

Whereas the coding of the symbolic units was localist (i.e. each unit was on when 
its corresponding label was active), the coding of the retinal units was more complex. 
We used the coding system of Jacobs an Kosslyn (1994) with retinal units receiving 
activation from their receptive fields in the 50 X 50 pixel matrix depicting each or the 
256 geometric figurcs. The receptive field of one retinal unit was a circular area 11 
(partially overlapping) pixels in diameter. Because of the receptive lield overlap (3 
pixels), there were 49 receptive fields arranged in seven columns by sevcn rows. The 
activation formula for the retinal units uscd the Gaussian distribution centred on the 
receptive field. Hence, pixels in the centre of the field contributed more to the 
activation of the retinal unit than those in the periphery. 

The formula for the activation x of each Gaussian retinal unit is: 

wherep is the location of the pixel, p is the mean of the Gaussian unit and o refers to 
the size of the receptive field. In our case o = 0.45. 

2.3. Training procedure 
Our stimuli and our network architecture partially resemble those used in Plunkett 
et al.'s (1992) work on vocabulary growth. They used the task of learning to name 
random dot patterns to study the emergence of symbols, but their symbols are only 
for E-Level categories; they are not combined to dcnote H-Level categories, which 
is the crucial feature of the present study. 

Our training procedure consisted of three stages: (1) prototype-based sorting; (2) 
E-Levcl naming and imitation lcarning; and (3) H-Level lcarning (figure 3). This 
resembles the sequence used in studies on objcct naming (Braine et al. 1990). Our 
nets use the error backpropagation algorithm because of its efficiency in learning 
categorization and naming. This is not a biologically plausible learning rule as 
implemented in artificial nets (the rcal nervous system does not have antidromic 
activity of this kind, or an internal supervisor to orchestrate it), but it is easy to 
conceive of more plausible ways of implementing essentially the same kind of 
algorithm biologically (with reciprocal feed-forward connections, orchestrated by the 
reinforcing effects of the immediate or belatcd Skinnerian 'consequences' of outputs), 
and implementation is not the issue here. In further developing the model, more 
'plausible' learning algorithms for neural networks, such as Bayesian learning 
(Goodman et u1.1992), will also be analysed. 
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Figure 3. Input and output in learning and test stages. Ncts on the left perform naming, thosc 
on the right, imitation learning. Absence of input or output is indicated by an astcrisk. Null 
input to the input units is all zeros. Null output corresponds to setting the units' error to 
zero, so that no changcs occur in the connection betwecn them and the hidden layer. 

2.3.1. Prototype-based sorting. The net was tirst trained, via back propagation, to sort 
the 256 training stimuli into thc four categories (64 stimuli cach) by producing as 
output the 'prototypc' of each category in the form of thc largest circle, ellipse, square 
or rectangle (coded in the same way as thc rest of the stimuli). 
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2.3.2. Entry-level naming and imitation. The net next learned to respond to each 
stimulus by producing both its prototype shape and its category name. An imitation 
task was interposed between each trial of the naming task, consisting of an extra 
activation cycle to allow the net to 'practise' on the category name learned in the 
preceding naming trial. These paired learning cycles strengthen the mapping between 
retina and linguistic input units and the linguistic output nodes. 

2.3.3. Higher-level learning. H-Level categories such as 'symrnetriclasymmetric' can 
be learned in one of two ways; either (1) through naming directly from the retinal 
input, as with the E-Level categories ('sensorimotor toil'); or (2) from Boolean 
combinations of the grounded category names ('symbolic theft'). We investigated (2): 
the net received as input the conjunction of the grounded name plus a new name 
(either 'asymmetric' or 'symmetric') and was required, through error-correcting 
feedback, to generate both names as output. (Simultaneous presentation of E-Level 
and H-Level names makes it unnecessary to use a recurrent network to learn the 
association.) A net that learns that two different grounded names, 'circle' and 'square', 
are always combined with the same new name, 'symmetric', should be able to name 
a circle both 'circle' on the basis of the prior sensorimotor grounding, and 'symmetric' 
on the basis of the new symbolic grounding. This learning task is based on imitation 
rather than naming, because networks learn to map the combination of linguistic units 
into linguistic output units only. 

2.4. Backpropagation 
One learning epoch consists of the presentation of all 256 training stimuli. The first 
learning stage (prototype-based categorization) consists of 10000 epochs. This is 
necessary because of the large number of retinal units (49) that need to be trained. 
The two E-Level and H-Level naming tasks last 2000 and l000 epochs, respectively. 
Each learning condition is replicated with 10 nets. In the prototype-sorting task 10 nets 
having different initial random weights are used (in the rangc +_l). In the following 
learning stages, the connection weights of the previous trained nets are used. The 
backpropagation learning rate for all lcarning tasks is 0.01. The node activation follows 
the standard sigmoid function, with the activation range of 0-1. The neural network 
software package TLEARN (htlp://crl.ucsd.edu) was used. 

3. Results 
3.1. Learning error and generalization 
All 10 nets learned the three tasks successfully. The final sum square error for the 
first stage, prototype-based categorization, was 0.09 after l 0  000 epochs (figure 4(a)). 
This error is not very low, but in most of the nets it was less than 0.05; it was only in a 
few that it was about 0.1. Nevertheless, the categorization of all the stimuli was 
unambiguous, that is, each shape was always categorized correctly; the errors pertain 
only to some imperfections in generating the right prototype (the largest figure for 
each shape) in this hybrid iconic/categorical task. The same level of error was attained 
in the E-Level naming stage, with a final error of 0.08 (figure 4(b)). 

The error in the H-Level learning was vcry low, about 0.01. In fact only the 
error in the name units is computed. The pattern in all three conditions is a rapid 
initial decrease in the early training epochs. After that, the error decreases very little 
(figure 4(c)). 
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Figure 4. Learning error for (a) the prototype sorting, (b) Entry-Level naming and 
(c) H-Level learning. 

The results of the generalization test showcd that after the prototype learning the 
32 test stimuli were properly catcgorized in the four E-Level categories. The same 
good generalization pcrformance was obtained in the other two learning stages. 
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3.2. Categorical perception effects 
At the level of the hidden units, the net builds categorical representations which must 
sort each icon reliably and correctly into its own category. This can be thought of as 
a featurefilter that reduces the category confusability by decreasing the within- 
category differences among the icons and increasing the between-category difference 
as needed to master reliably the sorting task (Harnad 1987). 

For the three learning stages of each of the 10 nets, we computed means and 
variances in the Euclidean distances for all 256 representations in the five-dimensional 
hidden unit activation space. We first computed the central (mean) points for the four 
categories. These were then used to compute both within- and between-category 
distances. The within-category variance is a measure of the distance between each of 
the 64 points and its respective category mean. There is a clear decrease in within- 
category variance from before prototype learning (0.315) to after (0.2). That is, during 
the course of the prototype learning thc 64 points of each category move closer to onc 
another [MANOVA: 1;(9,1)=6.12, p<0.035]. 

A further within-category compression from prototype matching (0.2) to naming 
(0.172) shows the effects of arbitrary naming on categorical representations 
(prototypes are analogue, names are arbitrary) [F(1,1)=14.9, p<0.004] (figure 5).  

The same effects are observed with the between-category differences (the distances 
between the centres of the four catcgories). From before learning (0.15) to prototype 
matching (1.14), the average between-category distance increases for all six pairwise 
comparisons betwcen the four category mcans [F(9,1)=1034, p< 0.0001)]. A further 
but smaller increase occurs with naming [1.16; F(9,1)=28,p< 0.00011. Figure 6 shows 
the betwecn-category distances for a sample of pairwise comparisons. 

After prototype-based categorization, the within-category-to-be distances between 
the two symmetric shapes (circle [C] versus square [S], 0.82) and the two asymmetric 
ones (ellipse [E] versus rectangle [R], 0.91) were smaller than the distances betwcen 
the four between-category-to-be pairs (C versus E and C vcrsus R both, 1.12; S versus 
R, 1.32; E versus S, 1.42; figure 6). This means that when the four prototype-based 
categories are formed, the two symmetric pairs and the two asymmetric ones are 

Figure 5. Average within-category distances. 
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Figure 6. Between-category distanccs for the pairs circles-squares and ellipses-rectangles. 

already closer to one another than the betwecn-category pairs are. The higher-order 
categorization task starts with this initial similarity structure. 

In this sense, the symmctric/asymmetric distinction can bc thought of as a somewhat 
'preparcd' category, as there is already an intrinsic bias in their similarity structure. 
A harder task would be one in which the within and between distanccs for the (future) 
categories are initially equal, but if the distances arc also small, this can run the risk 
of making the categorization task unlcarnable (Pevtzow and Harnad 1997). 

3.3. Grounding transfer 
We next tested whethcr grounding could be 'transferrcd' from directly grounded 
names to H-Lcvcl ones. Can a net that has learncd the category 'symmetric' indirectly 
through symbolic theft generalize it to the direct retinal input? To test this, after the 
11-Level training we presented the retinal stimuli alone (see figure 3, last column) and 
computed the frequency of correct rcsponses for the E-Level names and H-Level 
names (criterion for all conditions: correct bit > 0.5, others < 0.5). 

Table 1 rcports per cent correct for the E-Lcvel names (left column for each nct) 
and the H-Level names (right column). A net's success criterion was at lcast 50% 
correct. Nine of thc 10 nets met this criterion for Entry-Lcvel names and eight did for 
H-Level names (see italic columns in table 1). Assuming chance to be 0.5, the binomial 
probability of 9110 nets succcssful by chance 0.0098 (and for 8/10,0.044). Hence, the 
E-Lcvcl grounding successfully transferred to the H-Level categorization. 

We also did a control to test whcther this outcome depended on somc uncontrolled 
variable rather than grounding transfer. This could bc tested by eliminating the 
grounding stage for the E-Level categories (i.e. no E-Level naming and imitation) or 
by randomizing the grounding of the E-Level categories. Both mcthods are valid, but 
the first is prcfcrable because it is a more thorough way to eliminate the grounding of 
low-level categories, on which we infcr that the grounding transfer to H-Lcvcl 
categories is based. For thc control we repeated the training with 10 new nets. Now 
the E-Level learning stage was skipped and H-Lcvel learning followed immediately 
after prototype learning followed immediately alter prototype learning (figure 7). 
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Figure 7. Neural network input and output in the control simulations. 

The results are shown in table 2. Based on the same criterion as in table 1, none of the 
10 nets was successful in E-Level naming, and only three were successful in H-Level 
naming. 

We can also count the total number of correct responses instead of the number 
of correct nets. Since the total number of naming trials is high (2560 for E-Level 
plus H-Level), we can use the Gaussian distribution and compute the z value for the 
difference between the two probabilities. For E-Level naming, the pcr cent correct is 



Table 1. Per cent correct in grounding transfer test." 

Net 1 Net 2 Net 3 Net 4 Net 5 Net 6 Net 7 Net 8 Net 9 Net 10 
E H  E H  E H  E H  E H  E H  E H  E H  E H  E H  

C 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 0 100 100 100 100 

E 100 100 75 100 100 100 100 100 12 100 100 100 100 100 100 100 100 100 100 37 

a For each net, the number on the Left is correct responses for E-Level names and on the right for H-Level names. Rows are for the 64 circles (C), ellipses (E), 
squares (S) and rectangles (R). Italic cells indicate success in E-Level (E) or H-Level (H) categorization in the grounding transfer (criterion: at least 50%). 

Table 2. Per cent correct in grounding transfer  control^.^ 

Net 1 Net 2 Net 3 Net 4 Net 5 Net 6 Net 7 Net 8 Net 9 Net 10 
E H  E H  E H  E H  E H  E H  E H  E H  E H  E H  

a For each net, the number on the left is correct responses for E-Level names and on the right for H-Level names. Rows are for thhe 64 circles (C), 
ellipses (E), squares (S) and rectangles (R). Italic cells indicate the nets that succeeded in or H-Level (H) grounding transfer (criterion: at least 50% 
correct). 
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97% for the grounding transfer test and 15% for the controls (prototype learning 
only). For H-Level naming, the per cent correct is 92%, compared with 63% for the 
controls. Here we will compare only the probabilities for H-Level naming. z is 
computed using the formula: 

P - P ,  
= P;Q~ P&) 

N 

wherc P, and P, are, respectively, the two positive probabilities in the test and counter- 
test, and Q, and Q, are the reciprocal percentages (Q = l00 - P). N is 2560. For the 
difference between the two H-Level probabilities, z is 30.3 (N=2560; p<0.0001), 
confirming that prior direct grounding is cssential for grounding transfer. 

The results of the grounding test show that the proposed sequence of lcarning 
tasks allows nets to learn H-Level categories via either imitation learning or 
name composition. Because the names arc grounded directly in retinal projections, 
the new symbols inherit this grounding. After H-Lcvel learning, the retinal inputs 
activate the correct, symmetric calegory. But what is the mechanism that allows 
such grounding transfer to occur? How are categorical representations involved in 
this process? These questions can be answered by analysing the nets' hidden repre- 
sentations. 

We examined the hidden representations produced by nets after each naming 
and imitation learning stage. Figure 8 shows the hidden unit activations for one 
net (black square size proportional to activation). Activation values for the four 
categories (square, circle, rectangle, ellipse) are reported. For each category, the 
activation used is the avcrage for the 64 stimuli of each shape. We havc already noted 
that, owing to categorical perception effects, the hidden representations of the stimuli 
bclonging to a category are very similar and have low within-category distances 
(section 3.2). 

In thc Entry-Level tasks-naming (left group, top window) and imitation (right 
group, top window)-three hidden units (h3-h5) have very similar activation patterns 
in both tasks, whereas two (hl-h2) have different patterns. What the two patterns 
have in common is their contribution to the four linguistic output units (the two high- 
order linguistic units are not yet used). Wherein they differ is thc activation of the 
retinal output units. The three units with similar activations (h3-h5) will effectively 
influence the linguistic output units. The two that differ (hl-h2) will control the 
activation of the retinal output units. 

During the H-Level learning, the net is trained to activate the two linguistic output 
units for the symmetrylasymmetry categories. The middle window of figure 8 shows 
that aftcr H-Learning the net kccps the same hidden unit activation pattern as in the 
previous E-Level imitation, but uses il for adjusting the weights of the connections 
from the hiddcn units to the two new output units. At the beginning of the H-Learning 
these weights are random and near 1, whereas at the end they differentiate. Figure 9 
shows that at the cnd of H-Learning thesc 10 hidden-output conncction weights 
changc and that the two weights from the third hidden unit h3 are very high and have 
opposite sign. This unit is contributing in a significant way to the activation of the 
linguistic unit for 'symmetric' (weight +9). At the same time, h3 is inhibiting (weight 
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Figure 8. Hidden unit activations for the four categories (S=square, C-circle, R=rcctanglc, 
E=ellipse) in the two learning tasks and the symbol-grounding tcst. The position of the 
four activation groups is as in figure 3. For each catcgory. the activation is the average for 
thc 64 stimuli of each shapc. The size of the black square is proportional to the average 
activation (biggest squarc for activation = 1, empty white squarc for activation = 0). Note 
that only the third hidden unil can discriminatc bctwccn symmetric (S, C) and asymmetric 

(R, B) shapes. Sec tcxt for full explanation. 

-g), thc output unit for the category 'asymmctric'. The activation of h3 is maximal for 
the two symmetric shapes, squarc and circle, and Lero for the asymmctric shapes. 

Analysis of thc hidden unit activations during the symbol grounding test (figure 8, 
bottom window) reveals that the activation produced by the retinal input has not 
changed much from what it was in E-Naming. The pattcrn of units h3-h5 is very 
similar to E-Learning. In particular, h3 is what makes the discrimination between the 
symmetric and asymmetric shapcs possible. Its activation, in conjunction with the 
newly lcarncd weights connecting it to the two high-order linguistic units, allows the 
nct to turn on the right output unit. 

Analysis of the thrcc ncts that did not pass the grounding transfer test reveals that 
their hiddcn representations are more distributcd than in the other nets. There are 
more units whose activations diffcr for naming and imitation. It is accordingly more 
difficult for thc net to find a good set of hidden-output connection weights that can 
discriminate between symmetric and asymmetric shapes with either the retinal or thc 
linguistic input. 

What this analysis tells us is that the transfer of grounding from the low-level 
categories to the higher-level ones is mcdiate by the hidden representations. Becausc 
of categorical reprcsentation effects, these units partition the net's representa- 
tional space into distinct regions, one per catcgory. These regions tend to have high 
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BTo Asymmetry node 

10 E-? 
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Figure 9. Weights of conncctions between the fivc hidden units and the two output units for 
the higher-ordcr (symmetric/asymmctric) categorization. Notc that the highly contrastivc 
wcights from the third hiddcn unit are the ones mainly rcsponsible for the diffcrcntiation 

of the two output units categories (sec figure 8). See text for full cxplanation. 

between-category distances. Imitation learning creates links between well- 
differentiated categorical represcntations and discrete symbols. When these symbols 
are combined, they inhcrit their links to low-levcl categorical representations. 

3.4. Extending the simulation from extensional to inlensional categories2 
To control for the possibility that our findings applied only to conjunctions of 
individuals and conjunctions of symbols, we replicated and extended the grounding 
transfer test from merely extensional H-Level categories (based on Boolean 
combinations of individuals) to intensional ones (based on Roolean combinations of 
features) using a second set of stimuli: animal shapes (horse and turtlc) and texture 
features (stripes and spots) see (sec figure 10). With this combination of individuals 
and features (e.g. horsc and stripes) as E-Level stimuli (rather than only individuals 
and individuals, as in the prior simulations), it was possible to teach thc H-Level names 
by combining them into Boolcan descriptions of new H-Lcvel individuals (e.g. zebras). 
The H-Level 'zebra' name was trained in one stagc using the name conjunction: 'horse 
+ stripcs'. The test for the 11-Level 'zcbra' category was when whcther the zebra shape 
(an image ol a striped horsc) could be correctly named. Tn the prior shape experirncnt, 
the 11-Level namcs had been derived by conjoining two individuals (c.g. circle and 
squarc) to learn a new abstract feature category (symmetric). The training had been 
in two stages, one for lcarning that 'circle' was 'symmctric' and the other for lcarning 
that 'squarc' was likewise 'symmetric'. Thc grounding transfer test was also in two 
stages, one for each symmctric shape. The zebra simulations used the same method 
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E-Level stimuli H-Level stimuli 

Turtle Spots Sportoise 

Horse Stripes Zebra 

Figure 10. Stimuli used in the zebra simulations. 

as in section 2, except that (apart from the new stimuli) the H-Level training and 
testing involved only one stage for each H-Level category ('horse' + 'stripes' = 'zcbra', 
'turtle' + 'spots' = 'sportoise'). 

Tables 3 and 4 report per cent correct for grounding transfer for the H-Level stimuli 
with the standard and control nets (omitting the E-Level naming), respectively. Eight 
of the 10 experimental nets but none of the 10 control nets werc successful. 

The per cent correct for instances of naming (rather than of successful networks) 
was 83% in the experirncntal condition and 7% in the control (N=900). Thc difference 
was highly significant. 

These results are similar to those for the shape simulations. Only the nets that 
learned the direct grounding of the E-Level names ('horse' and 'stripes' were able to 
ground the H-Level names, correctly naming the zebra shape they had never 
encountered during training. The control nets could not name the H-Levcl categories 
because they had no grounding for the E-Level names. 

Table 3. Per cent correct in grounding lransfer test for zebra simulations." 

n l  n2 123 n4 n5 n6 n7 n8 n9 nIO 

Zebra 62 100 100 100 100 20 100 33 66 100 

'Sportoise' 100 100 100 100 100 0 100 100 100 100 

Numbers reler to IT-Level names. Italic cells refer to the eight successIul IT-Izvel nets in thc 
grounding transfer (critcrion: at least 50% correct). 

Table 4. Per cent correct in grounding transfer controls for zebra series." 

n l  n2 n3 n4 n5 n6 n7 n8 n9 n10 

Zebra 100 42 67 100 53 100 20 30 0 100 

'Sportoise' 0 100 0 0 0 0 0 0 0 0 

Numbers refer to H-Level names. No net met the 50% success critcrion. 

4. Discussion 
These results confirm and extend findings with other connectionist models of 
categorical perccption (Harnad et al. 1995, Csato et al. submitted). When trained to 
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categorize, neural nets build internal representations that compress differences within 
categories and expand them between. These data are also consistent with related 
findings in a connectionist model with localist encoding of perceptual features 
(Cangelosi and Harnad in press). 

Ours is a 'toy' model, but it is hoped that the findings will contribute toward 
constructing hybrid models that are immune to the symbol-grounding problem. 
Names (symbols) are grounded via net-based connections to the sensory projections 
of the objects they stand for. The grounding of E-Level symbols can then be 
transferred to further symbols through Boolean combinations of symbols expressing 
propositions. 

The control simulation showed that direct grounding of at least some names 
is necessary. We grounded the names of the four E-Level shapes directly in their 
retinal projections. The same retinal projections then also activate the new H-Level 
name, 'symmetric', through their indirect grounding. Circles and squares activate 
some common categorical representation in the hidden layer that in turn activates 
'symmetric'; rectangles and ellipses activate 'asymmctric'. 

The conditions that lead to grounding transfer require further simulations and 
analysis. E-Levcl naming proved sufficient for grounding transfer in most of the nets 
(80%). Thirty per cent of the control nets were likewise able to transfer grounding to 
the H-Level names, probably because compressionlseparation induced by their 
training in E-Level categorization and naming reduced the variability in the hidden 
laycr. This can be tested with further randomizcd and biased control conditions. 

During the prototype-based categorization, the nets learn to produce four separable 
hidden representations for each of the categories (64 shapes in each), with very similar 
activation patterns within categories and very different ones between. In addition, 
there is already some compression of the symmetric and asymmetric shapes at the 
prototype level. These 'head-starts' in similarity space, together with the analysis of 
hidden representations, explain how the nets managed to master thc H-Level naming 
without bcing taught the E-Level naming: they already had the categories, just not yet 
their names. And so it may well be with many categories; random seeding is an unlikely 
model for the initial conditions of biological categorization. 

Some categories will already be 'prepared' by evolution; others will be acquired 
on the basis of shared iconic or functional responses, rather than arbitrary naming. But 
when naming does occur, it will benefit from following thesc pre-existing gradients or 
boundaries in similarity space-as long as the requisite new category goes with them 
rather than against them. This too is a form of grounding transfer. 

This explanation is confirmed by the analysis of the naming errors for the E-Level 
names in the control condition. Nets named only a very low proportion of shapes 
correctly in this condition (15% bccause it becomes hardcr to be right by chance 
as the number of bits increases. With two possibilities, symmetric/asyrnrnetric, nets can 
achieve 50% by chance, but with four (circle, square, etc.), chancc is 25%. Moreover, 
the E-Level control errors reveal that circles are often called 'circle + square' or simply 
'square', and conversely. This interconfusability of circles and squares is what one 
would expect from their close categorical representations. 

Our model for categorization and naming can also test hypotheses about the origin 
of cognition and of language (Cangelosi and Parisi 1998). The proposition describing 
the H-Level categories in the present simulation ('circle [is] symmetric' 'ellipse [is] 
asymmetric', etc.) came as a kind of 'Deus ex Machina': the E-Level categories could 
have been acquired by ordinary trial and error reinforcement in the world, through 
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learning supervised by the consequences of categorizing and miscategorizing. This is 
what we have called learning by 'sensorimotor toil'. But in a realistic world the 
symbolic propositions on which the H-Level categories were based would have had 
to come from someone who already knew what was what. 

To get categories by 'symbolic theft', then, is to get them on the basis of the 
grounded knowledge of others, transferred to us via symbolic propositions whose 
terms-all but one-are already grounded for us too. This new way of acquiring 
categories spares us a great deal of sensorimotor toil. (Imagine if everything we 
learned from books and lectures instead had to be learned directly through trial and 
error experience!) Hence, gaining intellectual goods via hearsay is a kind of theft, 
but in most cases it is also a victimless crime, as the provider of the knowledge loses 
nothing by giving it away; perhaps it is more like a form of reciprocal altruism. There 
are exceptions, such as when the knowledge concerns scarce resources for which there 
is competition (Cangelosi and Harnad in press). But a paradigmatic example of 
victimless nature of linguistic thcft would be this article itself, which, if its reader has 
gained anything from it, certainly leaves the authors none the worse off for it. 

Notes 
1. A preliminary version of this work was prescnted at ICANN98, the 1998 International Conference on 

Artificial Neural Networks, Skovde, Scptember 1998. 
2. A set or category can be defincd by its 'extension' or its 'intension'. Its extcnsion is its membership. 

One way to define the sct would hence be to enumerate exhaustively all of its members, one by one. 
(The extension of thc set or 'even numbers' is 2,4,6,8 [.I). A category that was internally rcpresented 
extensionally would consist of internal representations of cach and every membcr ('instance-based' 
reprcseutation). The intension of a set consists of thc properties of its members that determine lhat 
they belong to that set. (The intension of the sct of 'even numbers' is those numbers that are divisible 
without remainder by 2.) A category that was internally represcnted intensionally would consist of an 
internal detector of those propcrties or 'invariants' that make an instance a mcmber of that set. An 
cxtensional intcrnal representation of the catcgory 'circle' would consist o l  all instances of circular 
shapes. An intcnsional internal represcntation of that same catcgory would consist of a detector for 
equidistance of a continuous set of points around a midpoint. 
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