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Abstract 

In experimental psychology there is wide evidence that language supports thinking. 
Bow this "support" works, however, is still not clear. One hypothesis is that 
categorization is easier when linguistic labels are available, because implicitly 
detected similarities and rules can be made explicit. We want to test this hypothesis 
using a neural-network simulation. 

Language is not a common sensorial input, but acts as a "commenf' on the world 
(Parisi, 1994). When linguistic labels are systematically coupled with objects, either of 
the two inputs can elicit one single response (e.g. articulating a name). In real situations 
labels can be names for the objects or may denotate specific features or functions of them. 
We constructed a neural-network simulation which learned to label a small set of stimuli 

in three input conditions (visual features, label, label + visual features), classifjing 
them according to colour, category, object name. Network internal representations 
were analyzed by using cluster analysis in order to show the influence of linguistic 
cues in categorization. In the three input conditions a single object was represented 
very similarly but it had different representations in the label + features condition, 
depending on the label. These results support evidence on the mediating role of 
linguistic labels. Future development lines and model improvements are discussed. 

In order to test how the "representational redesaiption" hypothesis (Clark & 
Karmiloff-Smith, 1993) can be implemented to allow the explicitation of previously 
acquired knowledge, we augmented the model requiring the.network to use the 
already acquired knowledge to extract the explicit semantic structure of the stimulus 
sef for each of the three subtasks. The hidden-unit layer was connected to a new 
module with three clusters of output units and the new connection weights were 
trained with the competitive-learning algorithm. 
The results show that the network is able to exploit previously acquired knowledge 

and to make explicit the stimuli semantic structure using the hidden (implicit) 
representation. This structure corresponds to that obtained by cluster analysis in the 
previous research. This method can be considered a first step in testing the 
representational redescription hypothesis. It will require W e r  exploration and testing 
of more complete models. Some related issues are discussed, such as  the controversial 
need of hybrid models. 
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1. Language, categorization, and representation in connectionist models 

In this paper a pilot study is presented of a general project aimed at studying the 
role of linguistic labelling on categorization. Asking about the relationships between 
language and categorization is in a sense something new and in a sense something 
old. It is new if we consider that in the cognitivist paradigm it seemed not to make 
much sense to ask about the relationships between language and other cognitive 
processes, simply because mental activity in that paradigm consisted in representing 
the world by using symbols which worked similarly to words, and were manipulated 
according to rules similar to grammatical rules. Thus the question about the relationships 
between language and nonsymbolic processes was not an issue. On the other hand, 
however, this question is not so new, because it was posed - surely in a different form 
but perhaps substantially with a similar content - in classical psychology, namely in 
the chapter concerning the relationships between language and thought. 

According to a classical psychological theory, dating back at least to Vygotslry, 
language substantially supports thinking. This idea had been endorsed also by the 
representationalist view, typical of the "human information processing" approach, 
but it has been accepted only in a particular version, inasmuch as it was believed that 
mgnition is only possible if internal symbols are available for coding and processing 
information (hence the "language-of-thought" hypothesis, which concerns how 
thought is formally coded rather than how this coding affects the development of 
thought). 

There is a wide classical set of psychological experiments, some confirming that 
verbal coding helps short-term memory storage, some saying that verbal information 
helps recall from long-term memory (these experiments are in every handbook of 
psychology: e.g. see Conrad, 1964; Bransford & Franks, 1971). None of these and 
others, however, show a necessary relationship between language and thought. At 
least, not the way it had been hypothesized in the so-called "linguistic relativism", 
that is according to the strong Whorfian hypothesis which says that language controls 
thought and perception Yet we know that studies in categorical perception, on the 
contrary, have shown that we are able to categorize at least some attributes of the world 
(e.g. colours) without linguistic support (cf. Bornstein, 1987) and there is evidence 
that some mental operations are independent from language, as one can see for example 
from the difficuIty in getting "thinking aloud" protocols during processes, like problem 
solving (Firicsson & Simon, 1993). 

However, the weaker hypothesis, which says that language "influences" thought, 
has never been rejected On the contrary, today there is a revival on this subject: for 
example, there is a recent area of research, about "implicit" or "tacit" knowledge 
(Reber, 1989; Seger, 1994), where the distance between what one knows and what 
one can tell is being explored, and here the role of language in categorization again 
is an important issue to be ctarified. 

In sum, h m  the psychological literature, it seems that there is agreement upon the 
fact that there is at least an influence of language on thought, though not deterministic. 



150 A. Greco and A. Cangelosi 

What still remains to be clarified is the way language influences thought. One 
hypothesis is that linguistic labels make categorization easier, because they help in 
making explicit regularities and similarities that were previously only implicitly 
detected in the cognitive system. Following Werner (1 963), a classical psychologist 
close to Gestalt and to the so-called "organismic" psychology, this path, from implicit 
states to explicit ones, may be called "microgenesis", that is the development of 
thought. 
The final aim of our project is to test this hypothesis by using a neural-network 0 

simulation. But the first step toward this achievement is to explore how is it possible 
to simulate, by using NN, the linguistic influence on categorization (though non- 
deterministic, as psychological literature has shown). The work being presented here 
tries to take this first step. Initially we are interested to know how the impIicit 
linguistic-dependent knwoledge emerges; the next step will be to study how this 
knowledge can become explicit and available for M h e r  cognitive tasks. 
The connectionist approach has already been used to simulate the role of language 

in categorization. The NN categorization capabilities have been well established 
since longtime, and we know that networks can efficiently extract features from 
input, recovering its categorical structure. Also to establish stimulus-response-like 
associations between labels and contents is not difficult: given the name, features can 
be retrieved and converse (e.g. see early pattern completion models implemented by 
using interactive activation, in Rumelhart & McClelland, 1986). 

For example, one straightforward kind of model is exemplified by Nosofsky et at. 
(1992), known as the ALCOVE system, where categories are learned by means of a 
repeated association of exemplars with their name. The task is to decide how much 
the stimulus belongs to a category (by oomputing its simiIarity with previous exemplars) 
firing the output nodes that represent the appropriate category. 
The main problem with connectionist research, however, is that it still gives little help 

in clarifying some problems that exist with the psychological relationships between 
categorizing and naming. We believe that this happens because, in fact, connectionist 
research perhaps has neglected that language is not a common sensorial input. 
Language is not like other objects in perception, but it has something special, because 
it acts as a "comment" on the world (Parisi, 1994). 
The typical tasks where language is used as a comment on the world are of this sort: 

first, linguistic labels are systematically coupled with objects; then at a subsequent 
presentation only one of the two inputs, all alone, can elicit some specific response 
(for example articulating a name). The important thing to be considered in this situation, 
in our opinion, is the fact that to perceive an object and an object + a comment on it 
(in the simplest case, perceiving it with a linguistic label) are diierent cases. In the 
second case the same thing does not happen as before plus a secand thing, but it is 
just a new thing. From the representational point of view, the question is if the 
object+label situation does elicit an old representation plus something more, or rather 
a fresh new representation. 
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This problem appears in some recent connectionist work, e.g. Miikkulainen & Dyer 
(1991) and Schyns (1991). They suggest a very simple solution on how language and 
categories could interact. As usual in this kind of networks, categorical features are 
extracted from the sensory properties of input, and they are coded in the network's 
hidden units: we can say this corresponds to the representation of types. But what 
about token labels? The proposed solution is that each time a new occurrence or 
token is encountered, the representation corresponding to its type is cloned and the 
individual identifier (that is, the name) is simply "attached" to it, constructing a sort 
of twofold representation. However, in our opinion this approach is too simple. 
We can assume that when visual features and labels of objects (arbitrarily coupled) 

are input, at some low level different representations are created for visual features 
and for the label. In Piagetian terms we perhaps can speak of two different schemata. 
But those two representations (or schemata) are not just superimposed, rather they 
must be coordinated, because - as we have said - the coupling is arbitrary (that is, 
there is no rule for predicting which labels are coupled with objects). So the idea of 
putting together in a single representation categorical features and unique tags for 
single instances, as Miikkulainen and Dyer do, looks unnatural because it ignores 
this need for coordination, wich is not superimposition. 

The Schyns' solution, in turn, is to have separate networks for categorizing and for 
naming. This is not a bad idea in itself; the problem however is that naming is not a 
completely independent task because, as we have seen, it often takes place 
s imultandy with categorizing. We shall give more examples later. 
In a sense it is true that categorizing and naming are independent functions. Schyns 

rcminds us of this fact, but the very fact that networks exist which can categorize 
without using labels is further evidence of it. Categorizing and naming are 
independent but related functions, however. Related because it is generally admitted 
(also by Schyns) that having labels can make category construction or retrieving 
easier. But why this happens is unclear. Then the real problem is how those two 
functions work and are related. 

In our opinion, to work out this problem, it is necessary to consider that: 
1. the process of naming in real life often starts "by ostension" (that is label+object 

is presented, as a parent does with her child when she points to an apple and says 
somethin& perhaps "apple", perhaps "red" or "good" or "it's to eat", etc.), 
depending on the context 

2. categorizing when also labels are given is "special", and is not the same case as 
when no labels are given. As we have seen, to perceive an object or an object + a 
label are different cases. 

We speak of labels and not of names because, as the example shows, in real situations 
labels can be names for the objects (apple) but they also may denote specific features 
or fhctions of them. For example features (red) or a function (something to eat). 
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What about internal representations? It seems reasonable to hypothesize that, at higher 
levels, they are affected by both inputs and thus the internal representation of a 
unique object must be different depending on the particular label that occurs with it 
(this would mean that language can mediate perception). On the other hand, the same 
old problem is that there must be something common in representations for similar 
objects, and in representations for similar features, otherwise categorization or concepts 
could not occur at all. But if our hypothesis holds, the common parts in this composite 
representation are not clear-cut separable parts. 

2. Simulation 1: The emergence of Implicit Knowledge 

Our simulation tries to reproduce a situation that concepts or objects have features in 
cornrnon.The idea is to construct a NN which has to learn to output a label in different 
input conditions, and then to analyze its intend representations in order to show the 
influence of linguistic cues in categorization. This simulation is a first pilot study, 
where a small set of stimuli and a simple neural architecture have been used. We 
hope to use the results of this initial study for designing a more complex and more 
comprehensive model. 
The aim of our model is to simulate the influence of a linguistic stimulus (label) on 

the internal represtentation of a physical object, and on the feature-extraction process 
for the categorization task. The different conditions are set by presenting the network 
sometimes with objects+labels (what we can call an ostension situation), at other 
times with objects or labels only. The modeled situation is similar to the one 
previously described, where a child learns to read different labels while seeing 
objects or pictures. These labels can show the name of the objed or its colour or its 
category; sometimes the child sees only objects, at other times only labels. 

When the model sees some label (alone or with the object), its task is to read this 
label, when it sees only the object's picture it receives an extra signal (a context flag) 
that indicates where attention must be directed to, or what it has to say (that is, the 
object's name, or colour or category). Learning occm because it is corrected each 
time it is wrong. Given that during the training the labels may refer to different 
aspects of the input (name, colour, category), the network does not simply learn to 
read but at the same time it learns to categorize. 

The stimulus set (Figure 1) includes four different objects: axe, nut, pen, ink. For 
each object, the visual features and the linguistic labels are coded acoording to the 
representation used in Plaut & Shallice (1993). For linguistic labels a localistic 
representation of the graphemes of the object name is used; for visual features the 
representation is distributed. 

The task is to output the label corresponding to one of three subtask requests: (i) 
name of the object, (ii) name of its functional category, and (iii) name of the colour 
of the object. 
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Esual features 

Component Shnpe SLe Colour 
Main Second nird 

AXE box-thin taper-to-point cylinder-long 1 to 2 feet red (or blue) 
NUT cylinder-short hok less 3 inches red (or blue) 
PEN cylinder-long taper-to-pint top 3 to 6 inches red (or blue) 
INK cylinder-hollow top liquid less 3 inches red (or blue) 

Binary coding 

SHAPE CODE SlZE CODE 
box-thin 0 0 0 1  less 3 inches 0 1 
cylindcs-shor( 0 0 1 0  3 to 6 inches 1 0 
cylinder-long 0 1 0 0  l t o 2 f c a  I l 
cylinder-hollow 1 0 0 0  

hole 0 0 1  1 COLOUR CODE 
taper-&point 0 1  l 0  

top 1 1 0 0  nd 0 1 
liquid 0 1 1 1  blue 1 0  

Excunpk 
red AXE box-thin taper-lo-point cylinder-tong l to 2 feet red 

0 0 0 1  0 1  1 0  0 1 0 0  1 1  1 0  

Figure 1. Stimulus set (adapted from Plaut & Shallice, 1993) 

This according to the label being read or according to the contextual flag. As the 
output, a phonetic representation of the name is used. 

The four objects belong to two diffe~ent functional categories (pen and ink to 
OFFICE, and axe and nut to TOOLS. Each object is presented to the network in two 
different colours (blue and red) so we can say there are 8 objects. The number of each 
object exposition to thc network in one epoch is three times (for the name, category, 
and colour subtask request). Moreover, each object is presented to the network in 
three different input conditions: 
- presentation of only the object visual features (F condition) with an extra input for 

one of the three subtask requests; 
- visual presentation together with the linguistic label referring to one subtask 

request @+L), 
- label-only presentation (L). 

Thus the total number of input conditions is 72 (4 objects x 2 colours x 3 subtasks 
x 3 input conditions). 
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The neural architecture (Figure 2) consists of a four-layer feed-forward network. 
There are 47 input units, 28 for the label, 16 for the visual features and 3 for the flag 
used for specifying the subtask requcst only in the F (features only) condition. In output 
there are 24 localitic phonetic units. The first hidden layer consists of two separate 
groups of units, each processing the visual features of the object or the label. The second 
layer of hidden units receives input from both the units groups of the lower hidden 
layer. The use of such a network structure has been suggested by Parisi e.a. (Parisi, 
Pagliarini & Fioreano, 1994) to allow an arbitrary coordination of schemata. 

Five different simulations were tun, starting with new random weights, each time 
producing very similar results. The data here shown come from only one of these 
simulations, they are not weighted data. 
The network was trained, by the back-propagation algorithm, for 1000 epochs, and 

it learned the task after a few hundreds epochs, reaching a very IOW error level 
(Figure 3). After the training, a test was made to check the error for each of the 72 
conditions, and it was always lower than 1 percent.Then we made a study of the network 
internal representation in order to show which kind of "semantic" representation 
each object activates in the different input conditions. To achieve this, a cluster 
analysis of the units activation values for the objects in all the input conditions was 
made for the second hidden layer. 

Figure 2. Neural architecture 
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Results 
1. The general dendrogram bartially shown in Figure 4, only for the name subtask) 

suggests that an internal representation emerges, reflecting the explicit semantic 
structure that was used in the construction of the mining stimulus set. 

2. We can ask how similar the network internal representations are in the different 
input conditions. The question is whether the three input conditions elicite different 
internal representations or only one. If we look at the similarities between 
representations (considering the distance at which clusters are f rrned) in the % dendrogram shown in Figure 4, we see that there is no difference or the same 
object in the three input conditions. The label+feature condition (e.g. "MK"+ink) 
and, noteworthy, the label-only presentation (''INK"), that is only linguistic, activate 
a ''semantic'' representation very similar to that used by the network when the physical 
features of the object are presented. A cluster analysis was also separately made 
for the two unit groups of the first hidden layer. The dendmgrams show that for 
the units group of the visual features, the network builds a different activation pattern 
for the fourobjects, while each object activates a similar pattern in all the different 
input conditions. The group of units for the label input activates different 
representations for all 8 labels. 

3. We aIso wanted to study how a single object is represented Does language have 
a role in differentiating the semantic representation of a single object? We did a 
separate cluster analysis considering only the 24 input conditiolls where 
fabel+object features (LtF) occurred Also in this case we analyzed the activation 
values of the second hidden-layer units. 

Figure 3. Error during training 
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Figure 4. Hierarchical cluster analysis (zoomed on the name subtask) 

The dendrogram in Figure 5 shows that the input col-responding to the visual features 
of a single object activates three internal representations which are different according 
to the three categorization subtasks. For example, the blue pen input - that is, the 
visual features of the blue pen - when presented with the label "blue" activates the 
%lueness" units, the "pen-ness" units when the label is "pen" etc. This clearly happens 
because of the presence of the linguistic label together with features. Remark that the 
network does not always look at the language; in fact, the same network is able to 
properly categorize items from only visual information. 
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The results reported here come fiom a very simple and limited model. However, 
these pilot simulations encourage the design of a more complex model for the study 
of the linguistic input role in categorization. Some future development lines for 
improving this model could be: 
- to use more realistic representations of the label codes (e.g. by using phonetic 

inputs, or a more linguistic-like input); 
- to use also a more complex stimuli set, and different categorization and naming tasks, 
- to adopt the lesion method to analyze the role of hidden units. We have already 

tried a preliminary lesion study of the single units in the second hidden layer and 
it seems to show that some units have a different role in some of the three input 
conditions. But this must be done more carefully. In fact, since we obtained similar 
results with a reduced network, we think that some unit gives no contribution, and 
that there may be redundancy in our network. 

CIOLYUI' 

IpoLg' 

m' 
m' 
'm- 
*&* 

Figure 5 - Hierarchical cluster analysis in the label+feature condition 
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3. The representational-redescription hypothesis 

The previous results support the assumption that this model is able to simulate the 
way linguistic information is used as a relevant property ofthe world that we perceive, 
and it is consistent with the general idea that the way we semantically organize the 
different objects into categories is affected by language. 

This msult, however, shows only an interaction between names and categories in 
producing a composite implicit representation, which is not the only way language 
can influence categorization. One additional hypothesis is that language helps 
categorization in making it more explicit. In other words, in the first presentation - when 
categorization occurs - regularities and similarities are implicitly detected in the input 
The role of language would be manifest the second time, when linguistic labels make 
categorization easier because they contribute in making explicit those regularities 
that previously were detected only implicitly. 

The second step of our project is then aimed at finding some method that allows 
what we can call a "microgenetic" analysis of the network processes, that is to show 
how language works in helping to make explicit similarities and regularities that are 
automatically detected by the categorization system. 
Before trying such a model, we needed a categorization system to include language. 

Secondly the transition from implicit to explicit had to become clear. 
In a system like the one described, there is no way to make explicit the internal 

network representational structure. As a wnsequence, the acquired knowledge is not 
available to the system for fiuther use in other tasks, as for example in problem solving. 
In order to exploit this acquired knowledge, at least a network retraining would be 
necessary (a special retraining for each new task), if not the design of a new structure. 
A second limit of this kind of model is clear if we consider some mults of empirical 
research on implicit learning and in developmental psychology which suggest that 
knowledge must be represented at different levels of explicitedness. 

If we briefly consider implicit-learning experiments (Reber, 1989; Seger 1994; 
Lewicki et al., 1992), these were usually carried out with tasks like artificial grammar 
learning, probability learning, covariation learning. Such experiments show that subjects 
can acquire knowledge about structure or about rules, which they exhibit only in their 
behaviour, as it is not available to consciousness for a direct report. For example, subjects 
can make judgments on new stimuli or they can be more accurate in new tasks, 
exploiting knowledge abstracted fiom previous presentations of related stimuli. Even 
in such cases, subjects show a clear ability to transfer implicit knowledge to different 
tasks where the surface structure is changed but the deep structure remains the same. 
Current connectionist models are not able to do so, because their ~epresentations are 
linked to particular stimuli, not to abstract rules. Implicit knowledge probably is not 
all-r-none but it is represented in different degrees on a scale of implicitness / 
explicitness. 
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in developmental psychology, an example is given by Clark & Karmiloff-Smith 
(1993, p. 497) of French children who are able to mark the distinction between two 
different uses of the French word 'un', which means either the indefinite article 'a', 
or the numeral 'one'. There is a level in devebpment when French children make this 
distinction explicit, which previously was only implicit, saying 'un petit four' (a 
cake) or 'un de petit four' (one cake). At a next level, and in the adult age, the partitive 
'de' is only used as an emphatic. 
These examples reveal the now usual distinction between nonsymbolic knowledge, 

which implicitly influences behaviour, and symbols that can be found only at explicit 
levels. In psychological but also in connectionist literature there is a discussion on 
how to reconcile those two kinds of knowledge. One hypothesis by Karmiloff-Smith 
(Karmiloff-Smith, 1992; Clark & Karmiloff-Smith, 1993) states that symbolic or 
explicit knowledge is extracted from the composite or implicit representation by 
using a process of redescription, which has been called representational redescription 

,@R). Even if such terminology may be misleading and simply "re-representation" 
could be a better expression, this hypothesis seems very attractive. The basic idea is 
that implicit, already acquired, knowledge would be explicitly available to other 
parts of the cognitive system by means of a process of recoding it into a new format. 
Different levels of redescription are envisaged. At the first level, termed "Implicit" 
(I), the system can use some procedural knowledge as a whole but cannot access its 
parts. The "Expticit-l" (El) level is a first redescription level of representations in a 
simpler, more flexible and generaLpurpose format. At this level, parts of procedures 
are available to the system but not to consciousness - which is only possible at the 
"Explicit-2" @2) level - and to verbal report, possible at the E3 level. It is also 
hypothesised that in this process knowtedge is "reduced" and some original detail is 
lost, but new representations are redundant in the system; they do not replace old 
formats. The appealing aspect of this hypothesis is that the implicit-explicit dichotomy 
is overcome and multiple levels of explicitness are envisaged, corresponding to 
multiple levels of redescription. In our opinion, this can give new insights on old 

hypotheses about language-thought relationships, such as differentiation (Wemer & 
Kaplan, 1963) and microgenesis (Wemer, 1957; Draguns, l 983). 
Clark & Karrniloff-Smith proposed also that the connectionist approach is a suitable 

method to investigate RR. They suggested to use a mechanism proposed by Mozer 
& Smolensky (1989) for "skeletonization" of successful trained-up networks, by 
identifying and deleting hidden units the least relevant for performance. They propose 
not to replace the original network by the "pruned" one, which would be a duplicate 
designed for use in new tasks. As an alternative implementation, they suggest to 
augment current connectionist models by adding some mechanism that allows 
knowledge re-representation, like in the Finch & Chater (1991) model where cluster 
analysis is used as an explicit, symbolic description of a trained network internal 
representation. 
Other authors (Shultz, 1994; Brook, 1995) proposed the cascade-correlation algorithm 

as a good cormectionist modet to test the RX hypothesis. These autors suggest a 
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direct relation between the learning phases envisaged in the cascade-conelation 
models and levels of knowledge re-representation, in wich the first error-driven 
phase would correspond to the implicit (I) level, the correlation-driven phase to the 
intermediate El level, and the second error-driven phase to the more explicit 
representations E2 and E3. However, as also Karmiloff-Smith (1994) claimed, such 
a model overestimates the role of error reduction, a process which makes sense in 
mastery learning, whereas RR can occur independently of behavioural mastery. 

4. Simulation 2: The emergence of explicit knowledge 

We have tried to implement a different solution in our model. We augmented our 
model by setting up a new task (which can be considered as a side-task) for our, previously 
trained, naming network. The new task is to make explicit the stimulus categories 
according to the main naming task being performed. To make explicit here means to 
activate a local symbolic output corresponding to the category presently being named. 

We used the competitive learning algorithm (Rumelhart & McClelland, 1986, 
p.151) to test this model. The competitive algorithm is an unsupervised learning 
technique for feature extraction. The network is trained to autonomously select and 
activate only one unit in the cluster of output units. It is usually called the winner- 
takes-all method. The selected output unit represents the common feature of the 
group of stimuli that activated it. 

By using this method we expect that the new competitive learning module is able 
to extract the data structure starting from the network hidden representation. Since, 
as we have said, the naming task and the categorization task are related, then a common 
internal representation should be usable by different networks which perform those 
tasks. 
The hidden unit activation5 of the previously trained network is the input to the output 
units in the competitive module. We can imagine this module as including one cluster 
of units for each category. In each cluster only one unit is activated, i.e. wins, according 
to the feature being represented After the new training, this module, to act as a 
representational redescription method, should be able to extract the input semantic 
structure firing the appropriate units. We sorted out the 72 stimuli in 3 groups of 24 
data, according to the three main categorization tasks (object naming, colour, category 
or fimction). For each of these stimulus groups, we separately trained the 
corresponding cluster in the competitive learning module. 

Thus, the overall network architecture consisted of the previous naming network, 
plus a cluster of competitive output units c0nnecte.d to the second layer of hidden 
units, the units where visual feature and label information are integrated (Figure 6). 
The output cluster had four output units for the naming data, two units for the function 
subtask data, and two units for the colour subtask. 

Duning the competitive training, the connection weights of the naming network 
were frozen. The connection weights from the second layer of hidden units to the 
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cluster of competitive output units were changed according to the learning algorithm. 
For each data set, the simulation run reached a stable state after about 100 (one hundred) 
epochs. 

HDOEM lsi S+r 

INPUT 

Figure 6 (see text) 

Results 
At the end of the competitive learning, a testing phase was performed We checked 
that the data were grouped according to the semantic s t r u m  built in the stimulus 
set. 21 out of the 24 objects in the naming task were co~~ect ly  classified in 4 groups 
(i.e. pen, ink, nut, axe) with a result of 87.5% mect/expcxted classification. 23 out of 
the 24 (96%) of the stimuli in the colour condition properly activated two units, one 
for the red objects and one for the green objects. 20 out of the 24 stimuli in the function 
condition were grouped in the two sets of tools and office objects (83% correct 
classification). 
To avoid a possible bias in extracting the correct number of stimulus classes, due to 

the preset number of units in the output cluster, we rerun the three simulations using 
larger output clusters. We used 6 units for the four-classes subtask (object name) and 
4 units for the two-classes subtasks (colour and function). The results were the same. 
Independently of %number of output units, the ~Iassification reflected the object 
semantic structure, and the extra output units were not used by the network. 
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5. Discussion 

As we expected, the two tasks, labeling and classification, are very related. Then it 
is easy to extract the relevant information from the hidden representation of the stimuli. 
Beyond this result, we think that some important issues are to be considered and 
discussed. The first issue regards the question: What exactly should the representational 
redescription output be? In our model, it is a local output with clear-cut units for single 
concepts. It is clear, however, that it is not plausible to imagine a plethora of different 
units for the infinite number of concepts that can be implicitly thought and then made 
explicit. Then our output units are a first approximation, useful to test the 
competitive algorithm in this model, but output units clearly should be replaced, perhaps 
with symbolic language tokens. This, in turn, leads to asking other questions (what 
kind of tokens and what kind of language? something like the external natural language 
or an intermediate "language of thought"?). In any case, it seems reasonable to 
hypothesize that output units should be composable and reusable. 
A second issue is that the model tries to make it clear that redescription depends on 

the context (or on what its use is). In our system this is modeled by the fact that the 
task currently being performed served as a prompt for redescription. A corollary is 
that we can have different redescriptions of the very same hidden state, depending on 
the context. This is another reason why we need composable and reusable output 
units. Of course, if even the same internal state can be redescribed in different ways, 
a local output is still less conceivable. 
Following this line of reasoning, it is natural to think that context can influence the 

very process of redescription and differentiation of implicit into the explicit. But 
what is context? If it is something mental, it should be represented along with the 
main concept. In this case it is legitimate to ask how is it represented. For example 
we can ask whether contextual knowledge, in turn, is implicit or explicit. One 
possibility is that context is a part of the overall implicit knowledge. Then it could 
act as an agent which takes part in the process of redescription. For example, its task 
could be to select what has to be redescribed. 
But if we consider implicit knowledge (and its contextual part) as coded in a language 

of thought, then consciousness would not be oriented by nonsymbolic processes but 
by internal language, as Vygotsky (1962), Luria (1961), and other psychologists, who 
studied the role of self-direction, had envisaged. A related question: Is there an 
endogenous pressure to re-code or is it suggested by contextual knowledge? There is a 
series of fsscinating hypotheses that d d  be tested by means of new models. 
A last question concerns the very nature of these models. Even if we are to accept 

the need for a process of description like the one described by Clark and Kmiloff- 
Smith (1993), as we have seen, there is a discussion about how to implement it. Is a 
111 connectionist system enough, or should a hybrid system be devised? We think 
that this is a pseudo-problem. In fact, the important thing is to determine whether 
symbols are necessary or not We think that there is no doubt that wmposable elements 
are needed, that act like words. How they are implemented is less important. 
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There is no doubt that only explicit symbols become available for introspective 
awareness. This is like meta-knowiedge, which is now so in fashion in cognitive and 
educational psychology. Meta-knowledge could be a process of redescription which 
enables to put order (for example to introduce time constraints) in low-level knowledge, 
according to the context. 
This is the right task for a competitive procedure. By competitive procedure here 

we mean not only the competitive lerning algorithm, but general control mechanisms 
where active representations are selected by means of inhibition of alternative ones. 
Of course one can question whether a competitive mode applies after supervised 
training or whether competition is present From the statt. Our opinion is that supervised 
and competitive algorithms should be both used in the same simulation, at different 
stages. We think of a model like a sandwich where unsupervised and supervised 
modules alternate. For example, the basis for any supervised learning is 
discrimination, which can be learnt by competitive procedures. But after learning 
new competitive processes can take place, like we have tried to show in our simulation 
(and since redescriptions can be corrected on the basis of some external or internal 
parameter, the process can continue}. We must think that autooriented and hetemoriented 
processes continuously interact, if we want to think of a truly self-organizing system. 
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